transformer.py 79.3 KB
Newer Older
liangjing's avatar
liangjing committed
1
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
3

"""Transformer."""
liangjing's avatar
v1  
liangjing committed
4
import math
liangjing's avatar
liangjing committed
5
6
7
8
import os
from contextlib import nullcontext
from typing import Optional

liangjing's avatar
v1  
liangjing committed
9
import numpy as np
10
import torch
11
import torch.nn.functional as F
12

liangjing's avatar
liangjing committed
13
from megatron import core
14
from megatron.core import mpu, tensor_parallel
15
from megatron.core.enums import ModelType
liangjing's avatar
liangjing committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from megatron.core.jit import jit_fuser
from megatron.core.models.common.embeddings.rotary_pos_embedding import (
    RotaryEmbedding,
    apply_rotary_pos_emb,
)
from megatron.core.num_microbatches_calculator import get_num_microbatches
from megatron.core.parallel_state import (
    get_tensor_and_expert_parallel_group,
    get_tensor_model_parallel_group,
)
from megatron.core.tensor_parallel import (
    gather_from_sequence_parallel_region_to_moe,
    get_cuda_rng_tracker,
    get_data_parallel_rng_tracker_name,
    reduce_scatter_to_sequence_parallel_region_from_moe,
)
from megatron.legacy.model.enums import AttnMaskType, AttnType, LayerType
from megatron.legacy.model.fused_bias_gelu import bias_gelu_impl
from megatron.legacy.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.legacy.model.utils import (
    attention_mask_func,
    erf_gelu,
    get_norm,
    openai_gelu,
)
from megatron.training import get_args, get_timers

import torch._dynamo
torch._dynamo.config.suppress_errors = True

from .module import MegatronModule
47

48
49
50
51
52
53
54
55
try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
liangjing's avatar
v1  
liangjing committed
56
    try:
liangjing's avatar
liangjing committed
57
58
59
        from flash_attn.flash_attn_interface import (
            flash_attn_varlen_func as flash_attn_unpadded_func,
        )
liangjing's avatar
v1  
liangjing committed
60
61
    except ImportError:
        flash_attn_unpadded_func = None
liangjing's avatar
liangjing committed
62
63
64
65
try:
    from flash_attn.flash_attn_triton import flash_attn_func
except ImportError:
    flash_attn_func = None
66

67
68
69
70
71
72
73
74
75
76
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
77
    Transformer takes input of size [s, b, h] and returns a
78
79
80
81
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

82
class DropPath(MegatronModule):
83
    """Drop paths (Stochastic Depth) per sample
84
85
86
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
87
    def __init__(self, drop_prob=0.):
88
89
90
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
91
    def forward(self, hidden_state):
92
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
93
            return hidden_state
94
95
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
96
97
        # hidden_state: [s, b, h]
        shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2)
98
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
99
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
100
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
101
        output = hidden_state.div(keep_prob) * random_tensor
102
103
        return output

104
105
106
107
108
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
109
    state back into h hidden dimension.
110
111
    """

liangjing's avatar
liangjing committed
112
    def __init__(self, config, is_expert=False):
113
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
114
        args = get_args()
115

liangjing's avatar
v1  
liangjing committed
116
117
118
119
120
        self.add_bias = config.add_bias_linear

        ffn_hidden_size = config.ffn_hidden_size
        if config.gated_linear_unit:
            ffn_hidden_size *= 2
121

122
        # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
123
        self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear(
liangjing's avatar
v1  
liangjing committed
124
125
126
127
            config.hidden_size,
            ffn_hidden_size,
            config=config,
            init_method=config.init_method,
128
            bias=self.add_bias,
129
            gather_output=False,
130
            skip_bias_add=True,
liangjing's avatar
liangjing committed
131
            is_expert=is_expert,
liangjing's avatar
v1  
liangjing committed
132
        )
133

134
135
136
137
        self.bias_gelu_fusion = False
        self.activation_func = None
        self.swiglu = args.swiglu

138
139
140
141
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
142
        elif args.swiglu:
liangjing's avatar
liangjing committed
143
            @torch.compile(mode="max-autotune-no-cudagraphs")
144
145
146
147
148
149
150
151
152
153
154
            def swiglu(x):
                x = torch.chunk(x, 2, dim=-1)
                return F.silu(x[0]) * x[1]
            self.activation_func = swiglu
        elif args.squared_relu:
            def squared_relu(x):
                return torch.pow(F.relu(x), 2)
            self.activation_func = squared_relu
        else:
            self.bias_gelu_fusion = args.bias_gelu_fusion
            self.activation_func = F.gelu
155
156

        # Project back to h.
157
        self.dense_4h_to_h = tensor_parallel.RowParallelLinear(
liangjing's avatar
v1  
liangjing committed
158
159
160
161
            config.ffn_hidden_size,
            config.hidden_size,
            config=config,
            init_method=config.output_layer_init_method,
162
            bias=self.add_bias,
liangjing's avatar
liangjing committed
163
164
165
            skip_bias_add=True,
            input_is_parallel=True,
            is_expert=is_expert,
liangjing's avatar
v1  
liangjing committed
166
        )
liangjing's avatar
liangjing committed
167
    @torch.compile(mode="max-autotune-no-cudagraphs")
168
169
    def forward(self, hidden_states):

170
171
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
172

173
        if self.bias_gelu_fusion:
174
175
176
            assert self.add_bias is True
            assert self.activation_func == F.gelu
            intermediate_parallel = bias_gelu_impl(intermediate_parallel, bias_parallel)
177
        else:
Jared Casper's avatar
Jared Casper committed
178
            if bias_parallel is not None:
179
180
                intermediate_parallel = intermediate_parallel + bias_parallel
            intermediate_parallel = self.activation_func(intermediate_parallel)
181
182
183
184

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
185

liangjing's avatar
liangjing committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
def sinkhorn(cost, tol=0.0001):
    cost = torch.exp(cost)
    d0 = torch.ones(cost.size(0), device=cost.device, dtype=cost.dtype)
    d1 = torch.ones(cost.size(1), device=cost.device, dtype=cost.dtype)

    eps = 0.00000001
    error = 1e9
    d1_old = d1
    while error > tol:
        d0 = (1/d0.size(0))*1/(torch.sum(d1*cost,1) + eps)
        d1 = (1/d1.size(0))*1/(torch.sum(d0.unsqueeze(1)*cost,0)+eps)
        error = torch.mean(torch.abs(d1_old-d1))
        d1_old = d1
    return d1*cost*d0.unsqueeze(1)


def get_router_linear_layer(config):
    args = get_args()
    router = torch.nn.Linear(args.hidden_size, args.num_experts, bias=False)
    with get_cuda_rng_tracker().fork(get_data_parallel_rng_tracker_name()):
        config.init_method(router.weight)
    setattr(router.weight, 'sequence_parallel',config.sequence_parallel)
    return router


rprenger's avatar
rprenger committed
211
212
213
214
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
liangjing's avatar
v1  
liangjing committed
215
    def __init__(self, config):
rprenger's avatar
rprenger committed
216
217
        super(SwitchMLP, self).__init__()
        args = get_args()
liangjing's avatar
liangjing committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        self.router = get_router_linear_layer(config)
        self.expert_parallel_size = mpu.get_expert_model_parallel_world_size()
        self.sequence_parallel = config.sequence_parallel
        self.add_bias = config.add_bias_linear

        assert args.num_experts % self.expert_parallel_size == 0
        self.num_local_experts = args.num_experts // self.expert_parallel_size
        local_expert_indices_offset = mpu.get_expert_model_parallel_rank() * self.num_local_experts
        self.local_expert_indices = [local_expert_indices_offset + i for i in range(self.num_local_experts)]

        self.local_experts = torch.nn.ModuleList()
        for i in range(self.num_local_experts):
            self.local_experts.append(ParallelMLP(config, is_expert=True))

    def gather_indices(self, local_indices):
        """ Gather tensors and concatinate along the first dimension."""
        group = get_tensor_and_expert_parallel_group()
        world_size = torch.distributed.get_world_size(group=group)
        # Bypass the function if we are using only 1 GPU.
        if world_size == 1:
            return local_indices

        dim_size = list(local_indices.size())
        dim_size[0] = dim_size[0] * world_size

        # TODO pre allocate memory
        output = torch.empty(dim_size, dtype=local_indices.dtype,
                             device=torch.cuda.current_device())
        torch.distributed._all_gather_base(
            output, local_indices.contiguous(), group=group
        )
        return output
250

rprenger's avatar
rprenger committed
251
    def forward(self, hidden_states):
liangjing's avatar
liangjing committed
252
253
        # hidden_states: [b, s, h]
        args = get_args()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
254
255
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
256
        h = hidden_states.size(2)
liangjing's avatar
liangjing committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        route = self.router(hidden_states).view(-1, args.num_experts)

        # TODO (rprenger) Right now we're just using the sinkhorn algorithm
        # for load balancing. There should be an option to do no load balancing
        # and the algorithm and parametets should be further tested
        if self.training:
            with torch.no_grad():
                sinkroute = sinkhorn(route.detach().to(dtype=torch.float32))
                _, max_ind = torch.max(sinkroute, dim=1)
            route = torch.sigmoid(route)
            max_prob = route[torch.arange(route.size(0)), max_ind]
        else:
            route = torch.sigmoid(route)
            max_prob, max_ind = torch.max(route, dim=1)

        max_prob = torch.unsqueeze(max_prob, 1)
        hidden_states = hidden_states.view(-1, hidden_states.size(2))
274

rprenger's avatar
rprenger committed
275
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
276
        # Converting [s, b, h] to [s*b, h].
277
        # Each vector could be routed differently
liangjing's avatar
liangjing committed
278
279
280
281
282
283
284
        if self.sequence_parallel or (self.expert_parallel_size > 1):
            global_hidden_states = \
                gather_from_sequence_parallel_region_to_moe(hidden_states)
            global_indices = self.gather_indices(max_ind)
        else:
            global_hidden_states = hidden_states
            global_indices = max_ind
rprenger's avatar
rprenger committed
285

liangjing's avatar
liangjing committed
286
287
288
        output_total = torch.zeros_like(global_hidden_states)
        if self.add_bias:
            output_bias_total = torch.zeros_like(global_hidden_states)
289

liangjing's avatar
liangjing committed
290
291
292
293
        for expert_num, expert in enumerate(self.local_experts):
            local_expert_index = self.local_expert_indices[expert_num]
            local_indices = (global_indices == local_expert_index).nonzero()
            hidden = global_hidden_states[local_indices, :]
rprenger's avatar
rprenger committed
294
            output, output_bias = expert(hidden)
liangjing's avatar
liangjing committed
295
296
            output_total[local_indices, :] = output
            if self.add_bias:
liangjing's avatar
v1  
liangjing committed
297
                output_bias = output_bias.expand_as(output)
liangjing's avatar
liangjing committed
298
299
300
301
302
303
304
305
306
307
308
309
310
                output_bias_total[local_indices, :] = output_bias

        if self.sequence_parallel or (self.expert_parallel_size > 1):
            output_total = \
                reduce_scatter_to_sequence_parallel_region_from_moe(output_total)
            if self.add_bias:
                output_bias_total = \
                    reduce_scatter_to_sequence_parallel_region_from_moe(output_bias_total)

                # bias is duplicated across tensor parallelism ranks;
                # reduce scatter reduces bias across tensor parallel_ranks
                output_bias_total = \
                    output_bias_total/mpu.get_tensor_model_parallel_world_size()
311

rprenger's avatar
rprenger committed
312
        output_total = output_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
313
        output_total = output_total.view(s, b, h)
liangjing's avatar
liangjing committed
314
        if self.add_bias:
liangjing's avatar
v1  
liangjing committed
315
316
317
318
            output_bias_total = output_bias_total*max_prob
            output_bias_total = output_bias_total.view(s, b, h)
        else:
            output_bias_total = None
rprenger's avatar
rprenger committed
319
320

        return output_total, output_bias_total
321

322
323

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
324

liangjing's avatar
v1  
liangjing committed
325
    def __init__(self, layer_number, config,
326
327
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
liangjing's avatar
v1  
liangjing committed
328
329
        self.fp16 = config.fp16
        self.bf16 = config.bf16
330

liangjing's avatar
v1  
liangjing committed
331
332
        self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
333
334
335
336
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
liangjing's avatar
v1  
liangjing committed
337
        self.sequence_parallel = config.sequence_parallel
338

liangjing's avatar
v1  
liangjing committed
339
        projection_size = config.kv_channels * config.num_attention_heads
340
341

        # Per attention head and per partition values.
342
        world_size = mpu.get_tensor_model_parallel_world_size()
343
344
345
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
liangjing's avatar
v1  
liangjing committed
346
            projection_size, config.num_attention_heads)
347
        self.num_attention_heads_per_partition = core.utils.divide(
liangjing's avatar
v1  
liangjing committed
348
            config.num_attention_heads, world_size)
349
350
351
352
353
354
355
356
357
358

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
liangjing's avatar
v1  
liangjing committed
359
            config.masked_softmax_fusion,
360
361
362
363
364
365
366
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
liangjing's avatar
v1  
liangjing committed
367
        self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
368

369
370
371
372
373
374
375
376
377
378
379
380
381
382
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
liangjing's avatar
v1  
liangjing committed
383
384
        query_layer = query_layer.reshape(output_size[2],
                                          output_size[0] * output_size[1], -1)
385
386
387
388
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
389
        # preallocting input tensor: [b * np, sq, sk]
390
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
391
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
392
            query_layer.dtype, "mpu")
393
394
395

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
396
            matmul_input_buffer,
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
414
        if not self.sequence_parallel:
415
            with tensor_parallel.get_cuda_rng_tracker().fork():
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
class FlashSelfAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

liangjing's avatar
liangjing committed
478
479
480
481
        # Use FlashAttention-2 when args.use_flash_attn_ck is True
        args = get_args()
        self.flash_attn_func = flash_attn_unpadded_func

482
483
484
485
486
487
    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
Jimmy Zhang's avatar
Jimmy Zhang committed
488
489
490

        assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
        assert all((i.is_cuda for i in (q,k,v)))
Jimmy Zhang's avatar
Jimmy Zhang committed
491
492

        batch_size, seqlen_q = q.shape[0], q.shape[1]
Jimmy Zhang's avatar
Jimmy Zhang committed
493
        seqlen_k = k.shape[1]
Jimmy Zhang's avatar
Jimmy Zhang committed
494

Jimmy Zhang's avatar
Jimmy Zhang committed
495
496
        q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
Jimmy Zhang's avatar
Jimmy Zhang committed
497
498
                                    device=q.device)

Jimmy Zhang's avatar
Jimmy Zhang committed
499
500
501
502
503
504
        if self.training:
            # during training q,k,v always have same seqlen
            assert seqlen_k == seqlen_q

            is_causal = self.causal
            cu_seqlens_k = cu_seqlens_q
liangjing's avatar
v1  
liangjing committed
505
            dropout_p = self.dropout_p
Jimmy Zhang's avatar
Jimmy Zhang committed
506
        else:
Jimmy Zhang's avatar
Jimmy Zhang committed
507
            # turn off FA causal mask after first inference autoregressive iteration
Jimmy Zhang's avatar
Jimmy Zhang committed
508
            # only on first autoregressive step q,k,v have same seqlen
Jimmy Zhang's avatar
Jimmy Zhang committed
509
510
            is_causal = seqlen_q == seqlen_k
            cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
Jimmy Zhang's avatar
Jimmy Zhang committed
511
                        device=q.device)
liangjing's avatar
v1  
liangjing committed
512
            dropout_p = 0
Jimmy Zhang's avatar
Jimmy Zhang committed
513

Jimmy Zhang's avatar
Jimmy Zhang committed
514
515
        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
liangjing's avatar
v1  
liangjing committed
516
            dropout_p,
Jimmy Zhang's avatar
Jimmy Zhang committed
517
518
            softmax_scale=self.softmax_scale, causal=is_causal
        )
Jimmy Zhang's avatar
Jimmy Zhang committed
519

520
521
522
        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output

liangjing's avatar
liangjing committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
class FlashSelfAttentionTriton(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_func is not None, ('Triton version of FlashAttention is not installed.')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
        assert q.dtype in [torch.float16, torch.bfloat16]
        assert q.is_cuda
        q, k, v = [rearrange(x, 's b h d -> b h s d').contiguous()
                       for x in (q, k, v)]
        output = flash_attn_func(q, k, v, self.causal)
        output = rearrange(output, 'b s h d -> h b (s d)').contiguous()
        return output
555

556
class ParallelAttention(MegatronModule):
557
558
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
559
    Self-attention layer takes input with size [s, b, h]
560
561
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
562

liangjing's avatar
v1  
liangjing committed
563
    def __init__(self, config, layer_number,
564
565
566
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
567
        args = get_args()
568
        self.layer_number = max(1, layer_number)
569
570
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
liangjing's avatar
v1  
liangjing committed
571
572
        self.params_dtype = config.params_dtype
        self.sequence_parallel = config.sequence_parallel
liangjing's avatar
liangjing committed
573
        self.config = config
liangjing's avatar
v1  
liangjing committed
574
575
576
577
578
579
580
581
        self.group_query_attention = args.group_query_attention
        self.num_query_groups = args.num_query_groups

        query_projection_size = config.kv_channels * config.num_attention_heads
        if self.group_query_attention:
            kv_projection_size = args.kv_channels * args.num_query_groups
        else:
            kv_projection_size = args.kv_channels * args.num_attention_heads
582

liangjing's avatar
liangjing committed
583
        self.use_flash_attn = (args.use_flash_attn_ck or args.use_flash_attn_triton) \
liangjing's avatar
v1  
liangjing committed
584
585
            and attention_type == AttnType.self_attn \
            and self.attn_mask_type == AttnMaskType.causal
liangjing's avatar
liangjing committed
586
587
        self.use_flash_attn_triton = args.use_flash_attn_triton

588
        if self.use_flash_attn:
liangjing's avatar
liangjing committed
589
590
591
            if args.use_flash_attn_ck:
                if flash_attn_unpadded_func is None:
                   raise ImportError('FlashAttention is not installed, please install with '
592
                                  'pip install flash-attn')
liangjing's avatar
liangjing committed
593
594
595
            if args.use_flash_attn_triton:
                assert flash_attn_func != None, "Cannot import FlashAttention triton "

596
597
598
599
600
601
            assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports '
                                                          'self-attention for now')
            assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only '
                                                                'supports causal mask for now')
            if rearrange is None:
                raise ImportError('einops is not installed, please install with pip install einops')
602

603
        # Per attention head and per partition values.
604
        world_size = mpu.get_tensor_model_parallel_world_size()
605
        self.hidden_size_per_attention_head = core.utils.divide(
liangjing's avatar
v1  
liangjing committed
606
            query_projection_size, config.num_attention_heads)
607
        self.num_attention_heads_per_partition = core.utils.divide(
liangjing's avatar
v1  
liangjing committed
608
609
610
611
612
613
614
615
616
617
            config.num_attention_heads, world_size)

        if self.group_query_attention:
            if args.num_query_groups % world_size != 0:
                raise NotImplementedError('Currently the num_query_groups should be '
                                          'a multiple of the tensor parallel size')
            self.num_query_groups_per_partition = core.utils.divide(
                        args.num_query_groups, world_size)
        else:
            self.num_query_groups_per_partition = self.num_attention_heads_per_partition
618
619

        # Strided linear layer.
620
        if attention_type == AttnType.self_attn:
621
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
liangjing's avatar
v1  
liangjing committed
622
623
624
625
                config.hidden_size,
                query_projection_size + 2 * kv_projection_size,
                config=config,
                init_method=config.init_method,
liangjing's avatar
liangjing committed
626
                bias=args.add_bias_linear or args.add_qkv_bias,
liangjing's avatar
v1  
liangjing committed
627
                gather_output=False)
628
629
630
        else:
            assert attention_type == AttnType.cross_attn

liangjing's avatar
v1  
liangjing committed
631
632
633
            if self.group_query_attention:
                raise NotImplementedError("Grouped query attention not implemented for cross-attention.")
            assert query_projection_size == kv_projection_size
634

liangjing's avatar
v1  
liangjing committed
635
636
637
638
639
640
641
            self.query = tensor_parallel.ColumnParallelLinear(
                config.hidden_size,
                query_projection_size,
                config=config,
                init_method=config.init_method,
                bias=config.add_bias_linear,
                gather_output=False)
642

liangjing's avatar
v1  
liangjing committed
643
644
645
646
647
648
649
650
651
            self.key_value = tensor_parallel.ColumnParallelLinear(
                config.hidden_size,
                2 * kv_projection_size,
                config=config,
                init_method=config.init_method,
                bias=config.add_bias_linear,
                gather_output=False)

        self.core_attention = CoreAttention(self.layer_number, config,
652
                                            self.attn_mask_type)
liangjing's avatar
v1  
liangjing committed
653
        self.checkpoint_core_attention = config.recompute_granularity == 'selective'
654

liangjing's avatar
liangjing committed
655
656
657
658
        # Currently FlashAttention only works with causal mask
        if self.use_flash_attn_triton:
            self.core_attention_flash = FlashSelfAttentionTriton(causal=True, attention_dropout=args.attention_dropout)
        elif self.use_flash_attn:
659
            self.core_attention_flash = FlashSelfAttention(
liangjing's avatar
v1  
liangjing committed
660
                causal=True, attention_dropout=config.attention_dropout
661
662
            )

663
        # Output.
664
        self.dense = tensor_parallel.RowParallelLinear(
liangjing's avatar
v1  
liangjing committed
665
666
667
668
            query_projection_size,
            config.hidden_size,
            config=config,
            init_method=config.output_layer_init_method,
669
            bias=args.add_bias_linear,
670
            input_is_parallel=True,
liangjing's avatar
v1  
liangjing committed
671
            skip_bias_add=True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
672

673
    def _checkpointed_attention_forward(self, query_layer, key_layer,
Mostofa Patwary's avatar
Mostofa Patwary committed
674
675
                                        value_layer, attention_mask,
                                        rotary_pos_emb=None):
676
677
678
679
680
681
682
683
684
685
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

Mostofa Patwary's avatar
Mostofa Patwary committed
686
687
688
        q_pos_emb, k_pos_emb = (None, None) if rotary_pos_emb is None \
            else rotary_pos_emb

689
        hidden_states = tensor_parallel.checkpoint(
690
            custom_forward,
Mostofa Patwary's avatar
Mostofa Patwary committed
691
692
            False, query_layer, key_layer, value_layer, attention_mask,
            q_pos_emb, k_pos_emb)
693
694

        return hidden_states
695

liangjing's avatar
v1  
liangjing committed
696
    def _allocate_memory(self, inference_max_sequence_len, batch_size, num_attention_heads):
697
698
699
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
liangjing's avatar
v1  
liangjing committed
700
            num_attention_heads,
701
702
703
704
705
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
706
707
                encoder_output=None, inference_params=None,
                rotary_pos_emb=None):
708
        # hidden_states: [sq, b, h]
709

710
711
712
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
Mostofa Patwary's avatar
Mostofa Patwary committed
713
        is_first_step = False
mshoeybi's avatar
mshoeybi committed
714
        if inference_params:
715
            if self.layer_number not in inference_params.key_value_memory_dict:
liangjing's avatar
v1  
liangjing committed
716
                inf_max_seq_len = inference_params.max_sequence_length
mshoeybi's avatar
mshoeybi committed
717
                inf_max_batch_size = inference_params.max_batch_size
718
                inference_key_memory = self._allocate_memory(
liangjing's avatar
v1  
liangjing committed
719
720
                    inf_max_seq_len, inf_max_batch_size,
                    self.num_query_groups_per_partition)
721
                inference_value_memory = self._allocate_memory(
liangjing's avatar
v1  
liangjing committed
722
723
724
                    inf_max_seq_len, inf_max_batch_size,
                    self.num_query_groups_per_partition)

725
726
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
Mostofa Patwary's avatar
Mostofa Patwary committed
727
                is_first_step = True
728
729
730
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
731

732
733
734
        # =====================
        # Query, Key, and Value
        # =====================
735
        if self.attention_type == AttnType.self_attn:
liangjing's avatar
liangjing committed
736

liangjing's avatar
v1  
liangjing committed
737
            # Attention heads [sq, b, h] --> [sq, b, ng * (np/ng + 2) * hn)]
738
739
            mixed_x_layer, _ = self.query_key_value(hidden_states)

liangjing's avatar
v1  
liangjing committed
740
741
742
743
744
745
746
747
            # [sq, b, hp] --> [sq, b, ng, (np/ng + 2) * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + (
                self.num_query_groups_per_partition,
                (
                    (self.num_attention_heads_per_partition // self.num_query_groups_per_partition + 2)
                    * self.hidden_size_per_attention_head
                ),
            )
748
749
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

liangjing's avatar
v1  
liangjing committed
750
            # [sq, b, ng, (np/ng + 2) * hn] --> [sq, b, ng, np/ng * hn], [sq, b, ng, hn], [sq, b, ng, hn]
751
            (query_layer,
liangjing's avatar
v1  
liangjing committed
752
753
754
755
756
757
758
759
760
761
762
763
            key_layer,
            value_layer) = torch.split(
                mixed_x_layer,
                [
                    (
                        self.num_attention_heads_per_partition // self.num_query_groups_per_partition
                        * self.hidden_size_per_attention_head
                    ),
                    self.hidden_size_per_attention_head,
                    self.hidden_size_per_attention_head
                ],
                dim=3)
liangjing's avatar
liangjing committed
764

liangjing's avatar
v1  
liangjing committed
765
            # [sq, b, ng, np/ng * hn] -> [sq, b, np, hn] -
liangjing's avatar
liangjing committed
766
            query_layer = query_layer.contiguous().view(query_layer.size(0), query_layer.size(1), -1, self.hidden_size_per_attention_head)
767
768
769
770
771
772
773
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
liangjing's avatar
v1  
liangjing committed
774
                2 * self.hidden_size_per_attention_head)
775
776
777
778
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
liangjing's avatar
v1  
liangjing committed
779
            value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2)
780
781
782
783
784
785

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
liangjing's avatar
v1  
liangjing committed
786
                self.hidden_size_per_attention_head)
787
            query_layer = query_layer.view(*new_tensor_shape)
788

mshoeybi's avatar
mshoeybi committed
789
790
791
        # ==================================
        # Adjust key and value for inference
        # ==================================
792

Mostofa Patwary's avatar
Mostofa Patwary committed
793
794
        # duplicate the pos_emb for self attention
        if rotary_pos_emb is not None:
Mostofa Patwary's avatar
Mostofa Patwary committed
795
796
797
798
            if isinstance(rotary_pos_emb, tuple):
                rotary_pos_emb = rotary_pos_emb
            else:
                rotary_pos_emb = ((rotary_pos_emb,) * 2)
Mostofa Patwary's avatar
Mostofa Patwary committed
799

mshoeybi's avatar
mshoeybi committed
800
        if inference_params:
mshoeybi's avatar
mshoeybi committed
801
802
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
803
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
804
805
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
806
            assert sequence_end <= inference_key_memory.size(0)
807
            # Copy key and values.
808
809
810
811
812
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
813
                :sequence_end, batch_start:batch_end, ...]
814
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
815
                :sequence_end, batch_start:batch_end, ...]
816

Mostofa Patwary's avatar
Mostofa Patwary committed
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837

            # adjust the key rotary positional embedding
            if rotary_pos_emb is not None:
                q_pos_emb, k_pos_emb = rotary_pos_emb
                # need to cross check this condition during inference
                # if not set_inference_key_value_memory:
                if not is_first_step:
                    # In inference, we compute one token at a time.
                    # Select the correct positional embedding
                    # (only the last token in the sequence)
                    q_pos_emb = q_pos_emb[sequence_end - 1 : sequence_end]
                else:
                    # In the first forward pass of inference,
                    # we use the entire provided prefix.
                    # q_pos_emb here has the rope embeddings of the entire
                    # prefix + to-be-generated output so
                    # we slice to just the prefix.
                    q_pos_emb = q_pos_emb[:sequence_end, :, :, :]
                k_pos_emb = k_pos_emb[:sequence_end, :, :, :]
                rotary_pos_emb = (q_pos_emb, k_pos_emb)

838
839
840
        # ==================================
        # core attention computation
        # ==================================
841

liangjing's avatar
v1  
liangjing committed
842
        # expand the key_layer and value_layer [sk, b, ng, hn] -> [sk, b, np, hn]
liangjing's avatar
liangjing committed
843
844
845
846
847
848
849
850
851
        if self.num_attention_heads_per_partition // self.num_query_groups_per_partition > 1:
            key_layer = key_layer.repeat_interleave(
                self.num_attention_heads_per_partition // self.num_query_groups_per_partition,
                dim = 2
            )
            value_layer = value_layer.repeat_interleave(
                self.num_attention_heads_per_partition // self.num_query_groups_per_partition,
                dim = 2
            )
liangjing's avatar
v1  
liangjing committed
852

Mostofa Patwary's avatar
Mostofa Patwary committed
853
854
855
        # apply relative positional encoding (rotary embedding)
        if rotary_pos_emb is not None:
            q_pos_emb, k_pos_emb = rotary_pos_emb
liangjing's avatar
liangjing committed
856
857
            query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb,self.config)
            key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb,self.config)
Mostofa Patwary's avatar
Mostofa Patwary committed
858
859
860
861
862
            # TODO, can apply positional embedding to value_layer so it has
            # absolute positional embedding.
            # otherwise, only relative positional embedding takes effect
            # value_layer = apply_rotary_pos_emb(value_layer, k_pos_emb)

863
864
865
866
867
868
869
        if not self.use_flash_attn:
            if self.checkpoint_core_attention:
                context_layer = self._checkpointed_attention_forward(
                    query_layer, key_layer, value_layer, attention_mask)
            else:
                context_layer = self.core_attention(
                    query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
870
        else:
liangjing's avatar
liangjing committed
871
872
873
            if not self.use_flash_attn_triton:
                query_layer, key_layer, value_layer = [rearrange(x, 's b ... -> b s ...').contiguous()
            #q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
874
875
876
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
liangjing's avatar
liangjing committed
877
                    context_layer = self.core_attention_flash(query_layer, key_layer, value_layer)
878
            else:
liangjing's avatar
liangjing committed
879
880
881
                context_layer = self.core_attention_flash(query_layer, key_layer, value_layer)
            if not self.use_flash_attn_triton:
                context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()
882
883

        # =================
884
        # Output. [sq, b, h]
885
886
887
        # =================

        output, bias = self.dense(context_layer)
888

889
890
891
        return output, bias


892
def bias_dropout_add(x, bias, residual, prob, training):
Jared Casper's avatar
Jared Casper committed
893
    # type: (Tensor, Optional[Tensor], Tensor, float, bool) -> Tensor
894
895
896
    if bias is not None:
        x = x + bias
    out = torch.nn.functional.dropout(x, p=prob, training=training)
897
898
899
900
901
902
903
904
905
906
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


liangjing's avatar
liangjing committed
907
@jit_fuser
908
def bias_dropout_add_fused_train(x: torch.Tensor,
Jared Casper's avatar
Jared Casper committed
909
                                 bias: Optional[torch.Tensor],
910
911
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
912
913
914
    return bias_dropout_add(x, bias, residual, prob, True)


liangjing's avatar
liangjing committed
915
@jit_fuser
916
def bias_dropout_add_fused_inference(x: torch.Tensor,
Jared Casper's avatar
Jared Casper committed
917
                                     bias: Optional[torch.Tensor],
918
919
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
920
    return bias_dropout_add(x, bias, residual, prob, False)
921
922
923
924
925


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
926
    Transformer layer takes input with size [s, b, h] and returns an
927
928
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
929

liangjing's avatar
v1  
liangjing committed
930
    def __init__(self, config,
931
                 layer_number, layer_type=LayerType.encoder,
932
933
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
934
        args = get_args()
935
936

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
937
        self.layer_number = layer_number
938
        self.layer_type = layer_type
939

liangjing's avatar
liangjing committed
940
        self.apply_residual_connection_post_norm \
liangjing's avatar
v1  
liangjing committed
941
            = config.apply_residual_connection_post_layernorm
942

liangjing's avatar
v1  
liangjing committed
943
944
        self.bf16 = config.bf16
        self.fp32_residual_connection = config.fp32_residual_connection
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
945

liangjing's avatar
liangjing committed
946
947
        # Normalize the input data.
        self.input_norm = get_norm(config)
948
949

        # Self attention.
950
        self.self_attention = ParallelAttention(
liangjing's avatar
v1  
liangjing committed
951
            config,
952
953
954
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
liangjing's avatar
v1  
liangjing committed
955
956
        self.hidden_dropout = config.hidden_dropout
        self.bias_dropout_fusion = config.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
957
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
958

liangjing's avatar
liangjing committed
959
960
        # Normalize the attention output
        self.post_attention_norm = get_norm(config)
961

liangjing's avatar
v1  
liangjing committed
962
963
964
965
966
        # Cross attention.
        if self.layer_type in (LayerType.decoder,
                               LayerType.retro_decoder,
                               LayerType.retro_decoder_with_retriever,
                               LayerType.retro_encoder):
967
            self.inter_attention = ParallelAttention(
liangjing's avatar
v1  
liangjing committed
968
                config,
969
970
                layer_number,
                attention_type=AttnType.cross_attn)
liangjing's avatar
liangjing committed
971
972
            # Normalize the attention output.
            self.post_inter_attention_norm = get_norm(config)
973

974
        # MLP
rprenger's avatar
rprenger committed
975
        if args.num_experts is not None:
liangjing's avatar
v1  
liangjing committed
976
            self.mlp = SwitchMLP(config)
rprenger's avatar
rprenger committed
977
        else:
liangjing's avatar
v1  
liangjing committed
978
            self.mlp = ParallelMLP(config)
979

980
981
982
983
984
985
986
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

liangjing's avatar
v1  
liangjing committed
987
988
        if args.retro_add_retriever:
            self.retro_num_neighbors = args.retro_num_neighbors
liangjing's avatar
liangjing committed
989
990
991
            self.retro_chunk_length = args.retro_chunk_length
            self.retro_retrieved_length = \
                args.retro_num_retrieved_chunks * args.retro_chunk_length
liangjing's avatar
v1  
liangjing committed
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

        # Retriever (bi-directional transformer with cross attention)
        if layer_type == LayerType.retro_decoder_with_retriever:
            self.retriever = ParallelTransformer(
                config=config,
                model_type=ModelType.retro_encoder,
                self_attn_mask_type=AttnMaskType.padding,
                pre_process=True,
                post_process=False,
            )
            self._retriever_key = 'retriever'
        else:
            self.retriever = None

    def default_decoder_cross_attention(self,
                                        encoder_output,
                                        enc_dec_attn_mask,
liangjing's avatar
liangjing committed
1009
1010
                                        norm_input,
                                        norm_output,
liangjing's avatar
v1  
liangjing committed
1011
1012
1013
1014
1015
                                        bias_dropout_add_func):
        '''Cross attention for a standard encoder-decoder model.'''

        # Attention.
        attention_output, attention_bias = \
liangjing's avatar
liangjing committed
1016
            self.inter_attention(norm_output,
liangjing's avatar
v1  
liangjing committed
1017
1018
1019
1020
                                 enc_dec_attn_mask,
                                 encoder_output=encoder_output)

        # Residual connection.
liangjing's avatar
liangjing committed
1021
1022
        if self.apply_residual_connection_post_norm:
            residual = norm_output
liangjing's avatar
v1  
liangjing committed
1023
        else:
liangjing's avatar
liangjing committed
1024
            residual = norm_input
liangjing's avatar
v1  
liangjing committed
1025
1026
1027
1028
1029
1030

        if attention_bias is not None:
            attention_bias = attention_bias.expand_as(residual)

        # Bias-dropout-add.
        with self.bias_dropout_add_exec_handler():
liangjing's avatar
liangjing committed
1031
            norm_input = bias_dropout_add_func(
liangjing's avatar
v1  
liangjing committed
1032
1033
1034
1035
1036
                attention_output,
                attention_bias,
                residual,
                self.hidden_dropout)

liangjing's avatar
liangjing committed
1037
1038
        # Normalize.
        norm_output = self.post_inter_attention_norm(norm_input)
liangjing's avatar
v1  
liangjing committed
1039

liangjing's avatar
liangjing committed
1040
        return norm_input, norm_output
liangjing's avatar
v1  
liangjing committed
1041
1042
1043

    def retro_encoder_cross_attention(self,
                                      retriever_output,
liangjing's avatar
liangjing committed
1044
1045
                                      norm_input,
                                      norm_output,
liangjing's avatar
v1  
liangjing committed
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
                                      bias_dropout_add_func):
        """Cross attention for Retro encoder.

        Notation:
            ns : Sequence length.
            bs : Batch size.
            d  : Hidden size.
            l  : Number of chunks per sample (i.e., seq_length/chunk_length).
            k  : Number of neighbors.
            r  : Number of retrieved tokens (neighbors + continuation).
        """

liangjing's avatar
liangjing committed
1058
        ns, bs, d = norm_output.shape # [r, bs * l * k, d]
liangjing's avatar
v1  
liangjing committed
1059
1060

        # Divide sequence dimension into chunks.
liangjing's avatar
liangjing committed
1061
1062
1063
1064
1065
1066
1067
        chunked_outputs = norm_output.reshape(self.retro_retrieved_length,
                                              -1,
                                              self.retro_num_neighbors,
                                              d)
        chunked_outputs_before_norm = \
            norm_input.reshape(self.retro_retrieved_length, -1,
                               self.retro_num_neighbors, d) # [r, bs*l, k, d]
liangjing's avatar
v1  
liangjing committed
1068
1069

        # Per-chunk attention.
liangjing's avatar
liangjing committed
1070
1071
        norm_inputs = []
        norm_outputs = []
liangjing's avatar
v1  
liangjing committed
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
        for k in range(self.retro_num_neighbors):

            # Attention.
            chunked_output = chunked_outputs[:,:,k].contiguous()
            attention_output, attention_bias = \
                self.inter_attention(
                    chunked_output, # Q (neighbor embedding)
                    None,
                    encoder_output=retriever_output) # K, V (hidden act)

            # Residual connection.
liangjing's avatar
liangjing committed
1083
            if self.apply_residual_connection_post_norm:
liangjing's avatar
v1  
liangjing committed
1084
1085
                residual = chunked_output
            else:
liangjing's avatar
liangjing committed
1086
                residual = chunked_outputs_before_norm[:,:,k]
liangjing's avatar
v1  
liangjing committed
1087
1088
1089

            # Re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
liangjing's avatar
liangjing committed
1090
                norm_input = bias_dropout_add_func(
liangjing's avatar
v1  
liangjing committed
1091
1092
1093
1094
                    attention_output,
                    None if attention_bias is None else attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
liangjing's avatar
liangjing committed
1095
                norm_inputs.append(norm_input)
liangjing's avatar
v1  
liangjing committed
1096
1097

            # Layer norm.
liangjing's avatar
liangjing committed
1098
1099
            norm_output = self.post_inter_attention_norm(norm_input)
            norm_outputs.append(norm_output)
liangjing's avatar
v1  
liangjing committed
1100
1101

        # Concatenate layer norms.
liangjing's avatar
liangjing committed
1102
1103
1104
1105
        # norm_input : [r, k * bs * l, d]
        # norm_output : [r, k * bs * l, d]
        norm_input = torch.stack(norm_inputs, dim=1).reshape(ns, bs, d)
        norm_output = torch.stack(norm_outputs, dim=1).reshape(ns, bs, d)
liangjing's avatar
v1  
liangjing committed
1106

liangjing's avatar
liangjing committed
1107
        return norm_input, norm_output
liangjing's avatar
v1  
liangjing committed
1108
1109
1110
1111
1112

    def retro_decoder_cross_attention(self,
                                      retriever_input,
                                      retriever_output,
                                      retriever_attn_mask,
liangjing's avatar
liangjing committed
1113
1114
                                      norm_input,
                                      norm_output,
liangjing's avatar
v1  
liangjing committed
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
                                      inference_params,
                                      bias_dropout_add_func):
        """Cross attention for Retro decoder.

        Notation:
            ns : Sequence length.
            bs : Batch size.
            d  : Hidden size.
            l  : Number of chunks per sample (i.e., seq_length/chunk_length).
            m  : Number of tokens per chunk.
            k  : Number of neighbors.
            r  : Number of retrieved tokens (neighbors + continuation).
        """

liangjing's avatar
liangjing committed
1129
        ns, bs, d = norm_output.shape
liangjing's avatar
v1  
liangjing committed
1130
1131
1132
1133
1134
1135
1136
        l = int(np.ceil(ns / self.retro_chunk_length))

        # Retrieve neighbors.
        if self.layer_type == LayerType.retro_decoder_with_retriever:
            first_ns = ns % self.retro_chunk_length
            if first_ns > 0:
                first_chunk, rest_chunk = \
liangjing's avatar
liangjing committed
1137
                    norm_output[:first_ns], norm_output[first_ns:]
liangjing's avatar
v1  
liangjing committed
1138
1139
1140
1141
1142
1143
1144
1145
                first_chunk = torch.nn.functional.pad(
                    first_chunk,
                    (0, 0, 0, 0, 0, self.retro_chunk_length - first_ns),
                    'constant',
                    0)
                chunked_output = \
                    torch.cat((first_chunk, rest_chunk), dim=0) # [l * m, bs, d]
            else:
liangjing's avatar
liangjing committed
1146
                chunked_output = norm_output # [l * m, bs, d]
liangjing's avatar
v1  
liangjing committed
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
            chunked_output = chunked_output \
                .reshape(l, self.retro_chunk_length, bs, d) \
                .permute(1, 2, 0, 3) \
                .reshape(self.retro_chunk_length, bs * l, d) \
                .contiguous()

            # Get Encoder Output
            retriever_output = self.retriever(
                hidden_states=retriever_input,
                attention_mask=retriever_attn_mask,
                retriever_output=chunked_output,
                retriever_attn_mask=retriever_attn_mask,
                inference_params=inference_params) # [r, k * bs * l , d]
            retriever_output = retriever_output.reshape(
                self.retro_retrieved_length * self.retro_num_neighbors, bs * l, d) # [r * k, bs * l, d]

        # Chunks.
        pad = (ns - 1) % self.retro_chunk_length
liangjing's avatar
liangjing committed
1165
        attending_chunks = norm_output[pad:]
liangjing's avatar
v1  
liangjing committed
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
        padded_chunks = torch.nn.functional.pad(
            attending_chunks,
            (0, 0, 0, 0, 0, self.retro_chunk_length - 1),
            'constant', 0)
        padded_chunked_output = padded_chunks \
            .reshape(l, self.retro_chunk_length, bs, d) \
            .permute(1, 2, 0, 3)
        padded_chunked_output = padded_chunked_output.reshape(
            self.retro_chunk_length, bs * l, d).contiguous()

        # Encoder output.
        attention_output, attention_bias = \
            self.inter_attention(padded_chunked_output,
                                 None,
                                 encoder_output=retriever_output)

        # Residual connection.
liangjing's avatar
liangjing committed
1183
1184
        if self.apply_residual_connection_post_norm:
            residual = norm_output
liangjing's avatar
v1  
liangjing committed
1185
        else:
liangjing's avatar
liangjing committed
1186
            residual = norm_input
liangjing's avatar
v1  
liangjing committed
1187
1188
1189

        # Re-enable torch grad to enable fused optimization.
        with torch.enable_grad():
liangjing's avatar
liangjing committed
1190
            norm_input = bias_dropout_add_func(
liangjing's avatar
v1  
liangjing committed
1191
1192
1193
1194
                attention_output,
                None if attention_bias is None else attention_bias.expand_as(attention_output),
                torch.zeros_like(attention_output),
                self.hidden_dropout)
liangjing's avatar
liangjing committed
1195
            norm_input = norm_input \
liangjing's avatar
v1  
liangjing committed
1196
1197
                .reshape(self.retro_chunk_length, bs, l, d) \
                .permute(2, 0, 1, 3) # [l, m, bs, d]
liangjing's avatar
liangjing committed
1198
1199
1200
            norm_input = norm_input.reshape(self.retro_chunk_length * l, bs, d)
            norm_input = torch.nn.functional.pad(
                norm_input,
liangjing's avatar
v1  
liangjing committed
1201
1202
                (0, 0, 0, 0, pad, 0),
                'constant', 0)[:ns] # [ns, b, d]
liangjing's avatar
liangjing committed
1203
1204
1205
            # TODO: better redesign with inference param
            args = get_args()
            norm_input = args.retro_attention_gate * norm_input + residual
liangjing's avatar
v1  
liangjing committed
1206
1207

        # Layer norm post the decoder attention
liangjing's avatar
liangjing committed
1208
        norm_output = self.post_inter_attention_norm(norm_input)
liangjing's avatar
v1  
liangjing committed
1209

liangjing's avatar
liangjing committed
1210
        return retriever_output, norm_input, norm_output
liangjing's avatar
v1  
liangjing committed
1211

1212
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1213
                encoder_output=None, enc_dec_attn_mask=None,
liangjing's avatar
v1  
liangjing committed
1214
1215
1216
1217
1218
                retriever_input=None,
                retriever_output=None,
                retriever_attn_mask=None,
                inference_params=None,
                rotary_pos_emb=None):
liangjing's avatar
liangjing committed
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228

        # Update the params in case the retro param changes during inference
        # TODO: better redesign with inference param
        args = get_args()
        if args.retro_add_retriever:
            self.retro_num_neighbors = args.retro_num_neighbors
            self.retro_chunk_length = args.retro_chunk_length
            self.retro_retrieved_length = \
                args.retro_num_retrieved_chunks * args.retro_chunk_length

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1229
        # hidden_states: [s, b, h]
1230

1231
        # Layer norm at the beginning of the transformer layer.
wxj's avatar
wxj committed
1232
1233
1234
        # from unsloth.kernels.rms_layernorm import fast_rms_layernorm
        # norm_output = self.input_norm(hidden_states) if not args.use_fast_rms_layernorm else fast_rms_layernorm(self.input_norm, hidden_states)
        norm_output = self.input_norm(hidden_states)
liangjing's avatar
v1  
liangjing committed
1235

1236
        # Self attention.
1237
        attention_output, attention_bias = \
1238
            self.self_attention(
liangjing's avatar
liangjing committed
1239
                norm_output,
1240
                attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1241
                inference_params=inference_params,
Mostofa Patwary's avatar
Mostofa Patwary committed
1242
                rotary_pos_emb=rotary_pos_emb)
1243

1244
        # Residual connection.
liangjing's avatar
liangjing committed
1245
1246
        if self.apply_residual_connection_post_norm:
            residual = norm_output
1247
1248
1249
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1250
        if self.drop_path is None:
1251
1252
1253
1254
1255
1256
1257
1258
1259
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
1260
            else:
1261
                bias_dropout_add_func = get_bias_dropout_add(self.training)
1262

1263
1264
            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)
1265
            with self.bias_dropout_add_exec_handler():
liangjing's avatar
liangjing committed
1266
                norm_input = bias_dropout_add_func(
1267
                    attention_output,
1268
                    attention_bias,
1269
1270
1271
1272
1273
1274
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
liangjing's avatar
liangjing committed
1275
            norm_input = residual + self.drop_path(out)
1276

1277
        # Layer norm post the self attention.
liangjing's avatar
liangjing committed
1278
        norm_output = self.post_attention_norm(norm_input)
1279

liangjing's avatar
v1  
liangjing committed
1280
1281
1282
1283
        # Cross attention.
        if self.layer_type == LayerType.encoder:
            pass
        elif self.layer_type == LayerType.decoder:
liangjing's avatar
liangjing committed
1284
            norm_input, norm_output = \
liangjing's avatar
v1  
liangjing committed
1285
1286
1287
                self.default_decoder_cross_attention(
                    encoder_output,
                    enc_dec_attn_mask,
liangjing's avatar
liangjing committed
1288
1289
                    norm_input,
                    norm_output,
liangjing's avatar
v1  
liangjing committed
1290
1291
                    bias_dropout_add_func)
        elif self.layer_type == LayerType.retro_encoder:
liangjing's avatar
liangjing committed
1292
            norm_input, norm_output = \
liangjing's avatar
v1  
liangjing committed
1293
1294
                self.retro_encoder_cross_attention(
                    retriever_output,
liangjing's avatar
liangjing committed
1295
1296
                    norm_input,
                    norm_output,
liangjing's avatar
v1  
liangjing committed
1297
1298
1299
                    bias_dropout_add_func)
        elif self.layer_type in (LayerType.retro_decoder,
                                 LayerType.retro_decoder_with_retriever):
liangjing's avatar
liangjing committed
1300
            retriever_output, norm_input, norm_output = \
liangjing's avatar
v1  
liangjing committed
1301
1302
1303
1304
                self.retro_decoder_cross_attention(
                    retriever_input,
                    retriever_output,
                    retriever_attn_mask,
liangjing's avatar
liangjing committed
1305
1306
                    norm_input,
                    norm_output,
liangjing's avatar
v1  
liangjing committed
1307
1308
1309
1310
1311
                    inference_params,
                    bias_dropout_add_func)
        else:
            raise Exception("Unsupported layer type, '%s'." %
                            self.layer_type.name)
1312

1313
        # MLP.
liangjing's avatar
liangjing committed
1314
        mlp_output, mlp_bias = self.mlp(norm_output)
1315

1316
        # Second residual connection.
liangjing's avatar
liangjing committed
1317
1318
        if self.apply_residual_connection_post_norm:
            residual = norm_output
1319
        else:
liangjing's avatar
liangjing committed
1320
            residual = norm_input
1321

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1322
        if self.drop_path is None:
1323
1324
            if mlp_bias is not None:
                mlp_bias = mlp_bias.expand_as(residual)
1325
            with self.bias_dropout_add_exec_handler():
1326
1327
                output = bias_dropout_add_func(
                    mlp_output,
1328
                    mlp_bias,
1329
1330
                    residual,
                    self.hidden_dropout)
1331
1332
1333
1334
1335
1336
1337

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
1338
1339
1340
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)
1341

1342
        else:
1343
1344
1345
            if mlp_bias is not None:
                mlp_output = mlp_output + mlp_bias
            out = torch.nn.functional.dropout(mlp_output,
1346
1347
1348
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
1349

liangjing's avatar
v1  
liangjing committed
1350
1351
1352
1353
        if self.layer_type == LayerType.retro_decoder_with_retriever:
            return output, retriever_output
        else:
            return output
1354
1355


1356
1357
1358
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
1359
    The sole purpose of this layer is for when a standalone embedding layer
1360
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
1361
1362
1363
1364
1365
1366
1367
1368
1369
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


liangjing's avatar
v1  
liangjing committed
1382
def _get_num_layers(args, model_type, is_decoder=False):
1383
    """Compute the number of transformer layers resident on the current rank."""
liangjing's avatar
v1  
liangjing committed
1384
1385
1386
1387
    is_encoder_and_decoder_model = (model_type == ModelType.encoder_and_decoder)
    if model_type == ModelType.retro_encoder:
        num_layers = args.retro_encoder_layers
    elif mpu.get_pipeline_model_parallel_world_size() > 1:
liangjing's avatar
liangjing committed
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
        assert not is_encoder_and_decoder_model, "This is no longer supported."
        assert args.num_layers == args.encoder_num_layers
        assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
            'num_layers must be divisible by transformer_pipeline_model_parallel_size'

        # When a standalone embedding stage is used, all transformer layers
        # are divided among pipeline rank >= 1, while on pipeline rank 0,
        # ranks either contain the input embedding layer (virtual pp rank 0),
        # or no layers at all (virtual pp rank >= 1).
        num_layers = (
            0
            if args.standalone_embedding_stage
            and mpu.get_pipeline_model_parallel_rank() == 0 else
            args.num_layers // args.transformer_pipeline_model_parallel_size
        )
1403
    else:
Jared Casper's avatar
Jared Casper committed
1404
1405
1406
1407
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
1408
1409
1410
    return num_layers


liangjing's avatar
v1  
liangjing committed
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
def _get_layer_type(model_type, default_layer_type, retro_layer_numbers,
                    layer_number):
    args = get_args()
    if args.retro_add_retriever and layer_number in retro_layer_numbers:
        if model_type == ModelType.retro_decoder:
            return LayerType.retro_decoder_with_retriever \
                if layer_number == retro_layer_numbers[0] \
                   else LayerType.retro_decoder
        elif model_type == ModelType.retro_encoder:
            return LayerType.retro_encoder
        else:
            raise Exception("Unsupported model type, '%s'." % model_type)
    else:
        return default_layer_type


1427
1428
1429
class ParallelTransformer(MegatronModule):
    """Transformer class."""

liangjing's avatar
v1  
liangjing committed
1430
1431
    def __init__(self, config,
                 model_type, layer_type=LayerType.encoder,
1432
                 self_attn_mask_type=AttnMaskType.padding,
liangjing's avatar
liangjing committed
1433
                 post_norm=True,
liangjing's avatar
v1  
liangjing committed
1434
1435
                 pre_process=True,
                 post_process=True,
1436
                 drop_path_rate=0.0):
1437
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
1438
        args = get_args()
1439

1440
        self.layer_type = layer_type
liangjing's avatar
v1  
liangjing committed
1441
1442
1443
        self.model_type = model_type
        self.bf16 = config.bf16
        self.fp32_residual_connection = config.fp32_residual_connection
liangjing's avatar
liangjing committed
1444
        self.post_norm = post_norm
1445
1446
1447
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
1448
        self.drop_path_rate = drop_path_rate
1449
        self.transformer_impl = args.transformer_impl
liangjing's avatar
v1  
liangjing committed
1450
        self.retro_add_retriever = args.retro_add_retriever
1451

1452
        # Store activation checkpoiting flag.
liangjing's avatar
v1  
liangjing committed
1453
1454
1455
        self.recompute_granularity = config.recompute_granularity
        self.recompute_method = config.recompute_method
        self.recompute_num_layers = config.recompute_num_layers
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1456
        self.distribute_saved_activations = \
liangjing's avatar
v1  
liangjing committed
1457
            config.distribute_saved_activations and not config.sequence_parallel
1458

liangjing's avatar
v1  
liangjing committed
1459
        self.sequence_parallel = config.sequence_parallel
1460

1461
        # Transformer Engine Init.
liangjing's avatar
v1  
liangjing committed
1462
1463
1464
        self.transformer_engine_v_0_10 = False
        self.transformer_engine_v_0_11 = False
        self.transformer_engine_v_0_8 = False
1465
1466
1467
        if self.transformer_impl == 'transformer_engine':
            global transformer_engine
            import transformer_engine
liangjing's avatar
v1  
liangjing committed
1468

liangjing's avatar
liangjing committed
1469
            if core.utils.is_te_min_version("0.8.0"):
liangjing's avatar
v1  
liangjing committed
1470
                self.transformer_engine_v_0_8 = True
liangjing's avatar
liangjing committed
1471
            if core.utils.is_te_min_version("0.10.0"):
liangjing's avatar
v1  
liangjing committed
1472
                self.transformer_engine_v_0_10 = True
liangjing's avatar
liangjing committed
1473
            if core.utils.is_te_min_version("0.11.0"):
liangjing's avatar
v1  
liangjing committed
1474
1475
                self.transformer_engine_v_0_11 = True

liangjing's avatar
liangjing committed
1476
1477
            assert not args.squared_relu, ("TransformerEngine does not support squared "
                                           "relu activation.")
liangjing's avatar
v1  
liangjing committed
1478
1479

        self.use_fp8 = args.fp8 is not None
1480
        self.fp8_recipe = None
1481
        self.fp8_group = None
1482
        if self.use_fp8:
liangjing's avatar
v1  
liangjing committed
1483
1484
            assert args.transformer_impl == 'transformer_engine', \
                'transformer-engine required for fp8 training and inference'
liangjing's avatar
liangjing committed
1485
            self.fp8_group = mpu.get_amax_reduction_group(tp_only_amax_red=config.tp_only_amax_red)
liangjing's avatar
v1  
liangjing committed
1486
            if args.fp8 == "e4m3":
1487
                fp8_format = transformer_engine.common.recipe.Format.E4M3
liangjing's avatar
v1  
liangjing committed
1488
            elif args.fp8 == "hybrid":
1489
                fp8_format = transformer_engine.common.recipe.Format.HYBRID
liangjing's avatar
v1  
liangjing committed
1490
1491
            else:
                raise ValueError("The DelayedScaling recipe only supports E4M3 and HYBRID formats.")
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
            self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling(
                margin=args.fp8_margin,
                interval=args.fp8_interval,
                fp8_format=fp8_format,
                amax_history_len=args.fp8_amax_history_len,
                amax_compute_algo=args.fp8_amax_compute_algo,
                override_linear_precision=(False, False, not args.fp8_wgrad),
            )

        self.num_microbatches_in_previous_step = -1
        self.microbatch_count = 0
liangjing's avatar
v1  
liangjing committed
1503
        self.checkpoint_core_attention = config.recompute_granularity == 'selective'
1504

1505
        # Number of layers.
liangjing's avatar
v1  
liangjing committed
1506
1507
1508
1509
1510
1511
        self.num_layers = _get_num_layers(args, model_type,
                                          layer_type==LayerType.decoder)

        self.drop_path_rates = [
            rate.item() for rate in
            torch.linspace(0, self.drop_path_rate, config.num_layers)]
Mohammad's avatar
Mohammad committed
1512

liangjing's avatar
v1  
liangjing committed
1513
1514
1515
1516
1517
1518
1519
        self.retro_layer_numbers = None
        if model_type == ModelType.retro_decoder:
            retro_layer_start = 6 if config.num_layers <= 15 else 9
            self.retro_layer_numbers = \
                np.arange(retro_layer_start, args.num_layers + 1, 3).tolist()
        if model_type == ModelType.retro_encoder:
            self.retro_layer_numbers = [1]
1520

Mohammad's avatar
Mohammad committed
1521
        # Transformer layers.
liangjing's avatar
v1  
liangjing committed
1522
1523
1524
1525
1526
        if args.retro_add_retriever:
            assert self.recompute_granularity != 'full', \
                "Full recompute not supported for Retro."
            assert args.transformer_impl == 'local', \
                "Transformer engine does not support Retro layers."
Mohammad's avatar
Mohammad committed
1527
        def build_layer(layer_number):
1528
            if args.transformer_impl == 'local':
liangjing's avatar
v1  
liangjing committed
1529
1530
1531
                current_layer_type = _get_layer_type(
                    model_type, layer_type, self.retro_layer_numbers,
                    layer_number)
1532
                return ParallelTransformerLayer(
liangjing's avatar
v1  
liangjing committed
1533
                    config,
1534
                    layer_number,
liangjing's avatar
v1  
liangjing committed
1535
                    layer_type=current_layer_type,
1536
1537
1538
                    self_attn_mask_type=self_attn_mask_type,
                    drop_path_rate=self.drop_path_rates[layer_number - 1])
            else:
liangjing's avatar
v1  
liangjing committed
1539
1540
1541
1542
1543
1544
1545
1546
                # This argument is only available from TE v0.10 onwards.
                extra_transformer_engine_kwargs = {}
                if self.transformer_engine_v_0_8:
                    extra_transformer_engine_kwargs["bias"] = args.add_bias_linear
                if self.transformer_engine_v_0_10:
                    extra_transformer_engine_kwargs["activation"] = "swiglu" if args.swiglu else "gelu"
                if self.transformer_engine_v_0_11:
                    extra_transformer_engine_kwargs["normalization"] = args.normalization
liangjing's avatar
liangjing committed
1547
1548
1549
1550
1551
                assert config.attention_softmax_in_fp32, "TransformerEngine only supports softmax compute in FP32."
                assert (
                    (bool(int(os.getenv("NVTE_APPLY_QK_LAYER_SCALING", "0"))) and args.fp16) == config.apply_query_key_layer_scaling
                ), ("Unsupported config for apply_query_key_layer_scaling in TransformerEngine. If --apply-query-key-layer-scaling is "
                    "provided, set env-var NVTE_APPLY_QK_LAYER_SCALING=1 and you must be using fp16.")
1552
                return transformer_engine.pytorch.TransformerLayer(
liangjing's avatar
v1  
liangjing committed
1553
1554
1555
1556
1557
1558
1559
1560
                    config.hidden_size,
                    config.ffn_hidden_size,
                    config.num_attention_heads,
                    layernorm_epsilon=config.layernorm_epsilon,
                    hidden_dropout=config.hidden_dropout,
                    attention_dropout=config.attention_dropout,
                    init_method=config.init_method,
                    output_layer_init_method=config.output_layer_init_method,
1561
                    layer_number=layer_number,
liangjing's avatar
v1  
liangjing committed
1562
                    kv_channels=config.kv_channels,
1563
                    self_attn_mask_type=self_attn_mask_type.name,
liangjing's avatar
liangjing committed
1564
1565
1566
1567
1568
                    tp_group=mpu.get_tensor_model_parallel_group() if mpu.is_initialized() else None,
                    tp_size=mpu.get_tensor_model_parallel_world_size(),
                    get_rng_state_tracker=get_cuda_rng_tracker
                    if get_cuda_rng_tracker().is_initialized()
                    else None,
liangjing's avatar
v1  
liangjing committed
1569
                    fuse_wgrad_accumulation=config.gradient_accumulation_fusion,
1570
1571
                    seq_length=args.seq_length,
                    micro_batch_size=args.micro_batch_size,
liangjing's avatar
v1  
liangjing committed
1572
1573
1574
                    sequence_parallel=config.sequence_parallel,
                    params_dtype=config.params_dtype,
                    apply_residual_connection_post_layernorm=config.apply_residual_connection_post_layernorm,
1575
1576
1577
1578
                    output_layernorm=False,
                    layer_type="encoder",
                    drop_path_rate=self.drop_path_rates[layer_number - 1],
                    set_parallel_mode=True,
liangjing's avatar
v1  
liangjing committed
1579
1580
                    fuse_qkv_params=True,
                    **extra_transformer_engine_kwargs)
1581

liangjing's avatar
v1  
liangjing committed
1582
1583
        if config.virtual_pipeline_model_parallel_size is not None:
            assert config.num_layers % config.virtual_pipeline_model_parallel_size == 0, \
1584
1585
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1586
            assert args.model_type != ModelType.encoder_and_decoder
1587
1588
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
liangjing's avatar
v1  
liangjing committed
1589
            self.num_layers = self.num_layers // config.virtual_pipeline_model_parallel_size
1590
1591
1592
1593
1594
1595
1596
1597
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
1598
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
liangjing's avatar
v1  
liangjing committed
1599
                config.num_layers // config.virtual_pipeline_model_parallel_size) + \
1600
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
1601
        else:
1602
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1603
            if args.model_type == ModelType.encoder_and_decoder and \
1604
1605
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1606
1607
1608
1609
1610
1611
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
1612
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
1613

1614
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
1615
            # When a standalone embedding stage is used (e.g.,
1616
            # args.standalone_embedding_stage == True), virtual pipeline ranks
1617
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
1618
1619
1620
1621
1622
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
1623
1624
1625
1626
1627
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
1628

liangjing's avatar
v1  
liangjing committed
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
            # Update dropout rate for Retro encoder.
            if model_type == ModelType.retro_encoder:
                for layer in self.layers:
                    if layer.self_attention.use_flash_attn:
                        layer.self_attention.core_attention_flash.dropout_p = \
                            torch.nn.Dropout(args.retro_encoder_attention_dropout)
                    else:
                        layer.self_attention.core_attention.attention_dropout.p =\
                            args.retro_encoder_attention_dropout
                    layer.hidden_dropout = args.retro_encoder_hidden_dropout

liangjing's avatar
liangjing committed
1640
        if self.post_process and self.post_norm:
1641
            # Final layer norm before output.
liangjing's avatar
liangjing committed
1642
            self.final_norm = get_norm(config)
1643

Mohammad's avatar
Mohammad committed
1644
    def _get_layer(self, layer_number):
1645
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
1646

1647
    def _checkpointed_forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1648
1649
                              encoder_output, enc_dec_attn_mask,
                              rotary_pos_emb, is_first_microbatch):
1650
        """Forward method with activation checkpointing."""
liangjing's avatar
v1  
liangjing committed
1651
        def custom(start, end):
1652
            def custom_forward(*args, **kwargs):
1653
                x_, *args = args
Mohammad's avatar
Mohammad committed
1654
1655
                for index in range(start, end):
                    layer = self._get_layer(index)
1656
                    x_ = layer(x_, *args, **kwargs)
1657
                return x_
liangjing's avatar
v1  
liangjing committed
1658
1659
1660
1661
1662
1663
1664
            return custom_forward

        te_forward_kwargs = {}
        if self.transformer_impl == 'transformer_engine':
            te_forward_kwargs['is_first_microbatch'] = is_first_microbatch
            if self.transformer_engine_v_0_10:
                te_forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
1665

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1666
        if self.recompute_method == 'uniform':
liangjing's avatar
v1  
liangjing committed
1667
1668
            # Uniformly divide the total number of Transformer layers and
            # checkpoint the input activation of each divided chunk.
1669
1670
1671
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
1672
                if self.transformer_impl == 'transformer_engine':
liangjing's avatar
v1  
liangjing committed
1673
1674
                    hidden_states = transformer_engine.pytorch.checkpoint(
                        custom(l, l + self.recompute_num_layers),
1675
1676
1677
                        self.distribute_saved_activations,
                        tensor_parallel.get_cuda_rng_tracker,
                        mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1678
                        hidden_states, attention_mask, encoder_output,
liangjing's avatar
v1  
liangjing committed
1679
                        enc_dec_attn_mask, **te_forward_kwargs)
1680
1681
1682
1683
                else:
                    hidden_states = tensor_parallel.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
liangjing's avatar
v1  
liangjing committed
1684
1685
1686
                        hidden_states, attention_mask,
                        encoder_output, enc_dec_attn_mask,
                        None, None, None, None, rotary_pos_emb)
1687

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1688
                l += self.recompute_num_layers
1689

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1690
        elif self.recompute_method == 'block':
1691
1692
1693
1694
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1695
                if l < self.recompute_num_layers:
1696
                    if self.transformer_impl == 'transformer_engine':
liangjing's avatar
v1  
liangjing committed
1697
1698
                        hidden_states = transformer_engine.pytorch.checkpoint(
                            custom(l, l + 1),
1699
1700
1701
                            self.distribute_saved_activations,
                            tensor_parallel.get_cuda_rng_tracker,
                            mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1702
                            hidden_states, attention_mask, encoder_output,
liangjing's avatar
v1  
liangjing committed
1703
                            enc_dec_attn_mask, **te_forward_kwargs)
1704
1705
1706
1707
                    else:
                        hidden_states = tensor_parallel.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
liangjing's avatar
v1  
liangjing committed
1708
1709
1710
                            hidden_states, attention_mask,
                            encoder_output, enc_dec_attn_mask,
                            None, None, None, None, rotary_pos_emb)
1711
                else:
1712
                    if self.transformer_impl == 'transformer_engine':
liangjing's avatar
v1  
liangjing committed
1713
                        hidden_states = custom(l, l + 1)(
Mostofa Patwary's avatar
Mostofa Patwary committed
1714
                            hidden_states, attention_mask, encoder_output,
liangjing's avatar
v1  
liangjing committed
1715
                            enc_dec_attn_mask, **te_forward_kwargs)
1716
1717
                    else:
                        hidden_states = custom(l, l + 1)(
liangjing's avatar
v1  
liangjing committed
1718
1719
1720
                            hidden_states, attention_mask,
                            encoder_output, enc_dec_attn_mask,
                            None, None, None, None, rotary_pos_emb)
1721
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1722
            raise ValueError("Invalid activation recompute method.")
1723
1724
1725

        return hidden_states

1726
    def set_input_tensor(self, input_tensor):
1727
1728
1729
1730
1731
1732
1733
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
1734
1735
        self.input_tensor = input_tensor

1736
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1737
                encoder_output=None, enc_dec_attn_mask=None,
liangjing's avatar
v1  
liangjing committed
1738
1739
1740
1741
1742
                retriever_input=None,
                retriever_output=None,
                retriever_attn_mask=None,
                inference_params=None,
                rotary_pos_emb=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1743
1744
        # hidden_states: [s, b, h]

1745
        # Checks.
mshoeybi's avatar
mshoeybi committed
1746
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1747
            assert self.recompute_granularity is None, \
1748
                'inference does not work with activation checkpointing'
1749

1750
        if not self.pre_process:
1751
            # See set_input_tensor()
1752
            hidden_states = self.input_tensor
1753

1754
1755
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
1756
1757
1758
1759
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
1760
1761
1762
1763
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
1764
        #
1765
1766
1767
1768
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
1769
        hidden_states = core.utils.make_viewless_tensor(
1770
            hidden_states,
1771
1772
            requires_grad=True,
            keep_graph=True,
1773
1774
        )

liangjing's avatar
v1  
liangjing committed
1775
        # RNG context.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1776
        if self.sequence_parallel:
1777
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
1778
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1779
            rng_context = nullcontext()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1780

liangjing's avatar
v1  
liangjing committed
1781
        # Forward layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1782
        with rng_context:
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
            # The fp8_autocast context manager is a no-op when enabled=True
            # The if...else serves to short circuit name resolution for fp8_autocast
            with transformer_engine.pytorch.fp8_autocast(
                enabled=self.use_fp8,
                fp8_recipe=self.fp8_recipe,
                fp8_group=self.fp8_group
            ) if self.use_fp8 else nullcontext():
                # Determine if the current iteration is first microbatch
                if self.num_microbatches_in_previous_step != get_num_microbatches():
                    self.microbatch_count = 0 # Reset count on new batch size rampup interval
                self.num_microbatches_in_previous_step = get_num_microbatches()
                is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0

                # Forward pass.
                if self.recompute_granularity == 'full':
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1802
                                                               rotary_pos_emb,
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
                                                               is_first_microbatch)
                else:
                    forward_kwargs = {
                        'encoder_output': encoder_output,
                        'enc_dec_attn_mask': enc_dec_attn_mask,
                        'inference_params': inference_params,
                    }

                    if self.transformer_impl == 'transformer_engine':
                        forward_kwargs['is_first_microbatch'] = is_first_microbatch
                        forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention
liangjing's avatar
v1  
liangjing committed
1814
1815
1816
1817
1818
1819
1820
                        if self.transformer_engine_v_0_10:
                            forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
                    else:
                        forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
                        forward_kwargs['retriever_input'] = retriever_input
                        forward_kwargs['retriever_output'] = retriever_output
                        forward_kwargs['retriever_attn_mask'] = retriever_attn_mask
1821
1822
1823
1824
1825
1826
1827
1828
1829

                    for index in range(self.num_layers):
                        layer = self._get_layer(index)

                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            **forward_kwargs)

liangjing's avatar
v1  
liangjing committed
1830
1831
1832
1833
1834
1835
1836
1837
                        # First Retro decoder layer returns both hidden_states
                        # and retriever_output. Make retriever_output available
                        # to subsequence Retro layers.
                        if isinstance(hidden_states, tuple):
                            assert len(hidden_states) == 2
                            hidden_states, retriever_output = hidden_states
                            forward_kwargs["retriever_output"] = retriever_output

1838
1839
1840
                # Skip counter update for eval and activation checkpointing
                if torch.is_grad_enabled() and self.training:
                    self.microbatch_count += 1
mshoeybi's avatar
mshoeybi committed
1841

1842
        # Final layer norm.
liangjing's avatar
liangjing committed
1843
1844
        if self.post_process and self.post_norm:
            hidden_states = self.final_norm(hidden_states)
1845

1846
        return hidden_states
liangjing's avatar
liangjing committed
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861

    def load_state_dict(self, state_dict, strict=True):
        """Customize load."""

        # Handle renaming layernorm -> norm in component names
        state_dict_ = {}
        for key in state_dict.keys():
            # Bypass TransformerEngine module parameters.
            if "layernorm_qkv" in key or "layernorm_mlp" in key:
                state_dict_[key] = state_dict[key]
                continue
            newkey = key.replace("layernorm", "norm")
            state_dict_[newkey] = state_dict[key]

        super().load_state_dict(state_dict_, strict)