pretrain_bert.py 20.4 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain BERT"""

18
19
20
21
# Flag to use Pytorch ddp which uses overlapping communication and computation.
USE_TORCH_DDP = False

from datetime import datetime
Raul Puri's avatar
Raul Puri committed
22
23
24
25
import os
import random
import numpy as np
import torch
26
import torch.nn.functional as F
Raul Puri's avatar
Raul Puri committed
27
28
29
30
31
32
33
34

from arguments import get_args
from configure_data import configure_data
from fp16 import FP16_Module
from fp16 import FP16_Optimizer
from learning_rates import AnnealingLR
from model import BertModel
from model import get_params_for_weight_decay_optimization
35
36
37
38
39
40
41
from model import gpt2_get_params_for_weight_decay_optimization
if USE_TORCH_DDP:
    from torch.nn.parallel.distributed import DistributedDataParallel as DDP
else:
    from model import DistributedDataParallel as DDP
import mpu
from apex.optimizers import FusedAdam as Adam
Raul Puri's avatar
Raul Puri committed
42
43
44
from utils import Timers
from utils import save_checkpoint
from utils import load_checkpoint
45
46
47
48
from utils import report_memory
from utils import print_args
from utils import print_params_min_max_norm
from utils import print_rank_0
Raul Puri's avatar
Raul Puri committed
49
50


51
def get_model(args):
Raul Puri's avatar
Raul Puri committed
52
53
    """Build the model."""

54
55
56
57
58
59
60
    print_rank_0('building BERT model ...')
    model = BertModel(args)

    if mpu.get_data_parallel_rank() == 0:
        print(' > number of parameters on model parallel rank {}: {}'.format(
            mpu.get_model_parallel_rank(),
            sum([p.nelement() for p in model.parameters()])), flush=True)
Raul Puri's avatar
Raul Puri committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)
        if args.fp32_embedding:
            model.module.model.bert.embeddings.word_embeddings.float()
            model.module.model.bert.embeddings.position_embeddings.float()
            model.module.model.bert.embeddings.token_type_embeddings.float()
        if args.fp32_tokentypes:
            model.module.model.bert.embeddings.token_type_embeddings.float()
        if args.fp32_layernorm:
            for name, _module in model.named_modules():
                if 'LayerNorm' in name:
                    _module.float()

    # Wrap model for distributed training.
80
81
82
83
84
    if USE_TORCH_DDP:
        i = torch.cuda.current_device()
        model = DDP(model, device_ids=[i], output_device=i,
                    process_group=mpu.get_data_parallel_group())
    else:
Raul Puri's avatar
Raul Puri committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        model = DDP(model)

    return model


def get_optimizer(model, args):
    """Set up the optimizer."""

    # Build parameter groups (weight decay and non-decay).
    while isinstance(model, (DDP, FP16_Module)):
        model = model.module
    layers = model.model.bert.encoder.layer
    pooler = model.model.bert.pooler
    lmheads = model.model.cls.predictions
    nspheads = model.model.cls.seq_relationship
    embeddings = model.model.bert.embeddings
    param_groups = []
    param_groups += list(get_params_for_weight_decay_optimization(layers))
    param_groups += list(get_params_for_weight_decay_optimization(pooler))
    param_groups += list(get_params_for_weight_decay_optimization(nspheads))
    param_groups += list(get_params_for_weight_decay_optimization(embeddings))
    param_groups += list(get_params_for_weight_decay_optimization(
        lmheads.transform))
    param_groups[1]['params'].append(lmheads.bias)

110
111
112
113
114
115
    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
            if not hasattr(param, 'model_parallel'):
                param.model_parallel = False

Raul Puri's avatar
Raul Puri committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    # Use Adam.
    optimizer = Adam(param_groups,
                     lr=args.lr, weight_decay=args.weight_decay)

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
                                       'min_scale':args.min_scale,
                                       'delayed_shift': args.hysteresis})

    return optimizer


def get_learning_rate_scheduler(optimizer, args):
    """Build the learning rate scheduler."""

    # Add linear learning rate scheduler.
    if args.lr_decay_iters is not None:
        num_iters = args.lr_decay_iters
    else:
140
        num_iters = args.train_iters
Raul Puri's avatar
Raul Puri committed
141
142
143
144
145
146
147
148
149
150
151
152
    init_step = -1
    warmup_iter = args.warmup * num_iters
    lr_scheduler = AnnealingLR(optimizer,
                               start_lr=args.lr,
                               warmup_iter=warmup_iter,
                               num_iters=num_iters,
                               decay_style=args.lr_decay_style,
                               last_iter=init_step)

    return lr_scheduler


153
def setup_model_and_optimizer(args):
Raul Puri's avatar
Raul Puri committed
154
155
    """Setup model and optimizer."""

156
    model = get_model(args)
Raul Puri's avatar
Raul Puri committed
157
158
159
160
    optimizer = get_optimizer(model, args)
    lr_scheduler = get_learning_rate_scheduler(optimizer, args)

    if args.load is not None:
161
162
163
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler, args)
    else:
        args.iteration = 0
Raul Puri's avatar
Raul Puri committed
164

165
    return model, optimizer, lr_scheduler
Raul Puri's avatar
Raul Puri committed
166
167


168
def get_batch(data_iterator, timers):
Raul Puri's avatar
Raul Puri committed
169
170
171
172
173
174
175
176
177
178
179
180
    ''' get_batch subdivides the source data into chunks of
    length args.seq_length. If source is equal to the example
    output of the data loading example, with a seq_length limit
    of 2, we'd get the following two Variables for i = 0:
    ┌ a g m s ┐ ┌ b h n t ┐
    └ b h n t ┘ └ c i o u ┘
    Note that despite the name of the function, the subdivison of data is not
    done along the batch dimension (i.e. dimension 1), since that was handled
    by the data loader. The chunks are along dimension 0, corresponding
    to the seq_len dimension in the LSTM. A Variable representing an appropriate
    shard reset mask of the same dimensions is also returned.
    '''
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    # Items and their type.
    keys = ['text', 'types', 'is_random', 'mask', 'mask_labels', 'pad_mask']
    datatype = torch.int64

    # Broadcast data.
    timers('data loader').start()
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    timers('data loader').stop()
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens = data_b['text'].long()
    types = data_b['types'].long()
    next_sentence = data_b['is_random'].long()
    loss_mask = data_b['mask'].float()
    lm_labels = data_b['mask_labels'].long()
    padding_mask = data_b['pad_mask'].byte()
Raul Puri's avatar
Raul Puri committed
201
202
203
204

    return tokens, types, next_sentence, loss_mask, lm_labels, padding_mask


205
def forward_step(data_iterator, model, args, timers):
Raul Puri's avatar
Raul Puri committed
206
207
208
    """Forward step."""

    # Get the batch.
209
    timers('batch generator').start()
Raul Puri's avatar
Raul Puri committed
210
    tokens, types, next_sentence, loss_mask, lm_labels, \
211
212
        padding_mask = get_batch(data_iterator, timers)
    timers('batch generator').stop()
Raul Puri's avatar
Raul Puri committed
213
214
215
    # Forward model.
    output, nsp = model(tokens, types, 1-padding_mask,
                        checkpoint_activations=args.checkpoint_activations)
216
217
218
219
220
221
222

    nsp_loss = F.cross_entropy(nsp.view(-1, 2).contiguous().float(),
                               next_sentence.view(-1).contiguous(),
                               ignore_index=-1)

    losses = mpu.vocab_parallel_cross_entropy(
        output.contiguous().float(), lm_labels.contiguous())
Raul Puri's avatar
Raul Puri committed
223
224
225
    loss_mask = loss_mask.contiguous()
    loss_mask = loss_mask.view(-1)
    lm_loss = torch.sum(
226
        losses.view(-1) * loss_mask.view(-1).float()) / loss_mask.sum()
Raul Puri's avatar
Raul Puri committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

    return lm_loss, nsp_loss


def backward_step(optimizer, model, lm_loss, nsp_loss, args):
    """Backward step."""

    # Total loss.
    loss = lm_loss + nsp_loss

    # Backward pass.
    optimizer.zero_grad()
    if args.fp16:
        optimizer.backward(loss, update_master_grads=False)
    else:
        loss.backward()

    # Reduce across processes.
    lm_loss_reduced = lm_loss
    nsp_loss_reduced = nsp_loss
247
248
249
250
251

    reduced_losses = torch.cat((lm_loss.view(1), nsp_loss.view(1)))
    torch.distributed.all_reduce(reduced_losses.data)
    reduced_losses.data = reduced_losses.data / args.world_size
    if not USE_TORCH_DDP:
Raul Puri's avatar
Raul Puri committed
252
253
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
254
255
    lm_loss_reduced = reduced_losses[0]
    nsp_loss_reduced = reduced_losses[1]
Raul Puri's avatar
Raul Puri committed
256
257
258
259
260
261
262
263

    # Update master gradients.
    if args.fp16:
        optimizer.update_master_grads()

    # Clipping gradients helps prevent the exploding gradient.
    if args.clip_grad > 0:
        if not args.fp16:
264
            mpu.clip_grad_norm(model.parameters(), args.clip_grad)
Raul Puri's avatar
Raul Puri committed
265
266
267
268
269
270
        else:
            optimizer.clip_master_grads(args.clip_grad)

    return lm_loss_reduced, nsp_loss_reduced


271
272
def train_step(data_iterator, model, optimizer, lr_scheduler,
               args, timers):
Raul Puri's avatar
Raul Puri committed
273
274
275
    """Single training step."""

    # Forward model for one step.
276
277
278
279
    timers('forward').start()
    lm_loss, nsp_loss = forward_step(data_iterator, model,
                                     args, timers)
    timers('forward').stop()
Raul Puri's avatar
Raul Puri committed
280
281

    # Calculate gradients, reduce across processes, and clip.
282
    timers('backward').start()
Raul Puri's avatar
Raul Puri committed
283
284
    lm_loss_reduced, nsp_loss_reduced = backward_step(optimizer, model, lm_loss,
                                                      nsp_loss, args)
285
    timers('backward').stop()
Raul Puri's avatar
Raul Puri committed
286
287

    # Update parameters.
288
    timers('optimizer').start()
Raul Puri's avatar
Raul Puri committed
289
    optimizer.step()
290
    timers('optimizer').stop()
Raul Puri's avatar
Raul Puri committed
291
292
293
294
295
296
297
298
299
300
301

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
        lr_scheduler.step()
    else:
        skipped_iter = 1

    return lm_loss_reduced, nsp_loss_reduced, skipped_iter


302
303
304
def train(model, optimizer, lr_scheduler,
          train_data_iterator, val_data_iterator, timers, args):
    """Train the model."""
Raul Puri's avatar
Raul Puri committed
305
306
307
308
309
310
311
312
313

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_lm_loss = 0.0
    total_nsp_loss = 0.0

    # Iterations.
314
    iteration = args.iteration
Raul Puri's avatar
Raul Puri committed
315
316
317
    skipped_iters = 0

    timers('interval time').start()
318
319
    report_memory_flag = True
    while iteration < args.train_iters:
Raul Puri's avatar
Raul Puri committed
320

321
        lm_loss, nsp_loss, skipped_iter = train_step(train_data_iterator,
Raul Puri's avatar
Raul Puri committed
322
323
324
                                                     model,
                                                     optimizer,
                                                     lr_scheduler,
325
                                                     args, timers)
Raul Puri's avatar
Raul Puri committed
326
327
328
329
330
331
332
333
334
335
336
337
338
        skipped_iters += skipped_iter
        iteration += 1

        # Update losses.
        total_lm_loss += lm_loss.data.detach().float()
        total_nsp_loss += nsp_loss.data.detach().float()

        # Logging.
        if iteration % args.log_interval == 0:
            learning_rate = optimizer.param_groups[0]['lr']
            avg_nsp_loss = total_nsp_loss.item() / args.log_interval
            avg_lm_loss = total_lm_loss.item() / args.log_interval
            elapsed_time = timers('interval time').elapsed()
339
340
            log_string = ' iteration {:8d}/{:8d} |'.format(iteration,
                                                            args.train_iters)
Raul Puri's avatar
Raul Puri committed
341
342
343
            log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
                elapsed_time * 1000.0 / args.log_interval)
            log_string += ' learning rate {:.3E} |'.format(learning_rate)
344
345
            log_string += ' lm loss {:.6E} |'.format(avg_lm_loss)
            log_string += ' nsp loss {:.6E} |'.format(avg_nsp_loss)
Raul Puri's avatar
Raul Puri committed
346
347
348
            if args.fp16:
                log_string += ' loss scale {:.1f} |'.format(
                    optimizer.loss_scale)
349
            print_rank_0(log_string)
Raul Puri's avatar
Raul Puri committed
350
351
            total_nsp_loss = 0.0
            total_lm_loss = 0.0
352
353
354
355
356
357
            if report_memory_flag:
                report_memory('after {} iterations'.format(iteration))
                report_memory_flag = False
            timers.log(['forward', 'backward', 'optimizer', 'batch generator',
                        'data loader'],
                       normalizer=args.log_interval)
Raul Puri's avatar
Raul Puri committed
358
        # Checkpointing
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
        if args.save and args.save_interval and iteration % args.save_interval == 0:
            save_checkpoint(iteration, model, optimizer, lr_scheduler, args)

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(
                prefix, val_data_iterator, model, args, timers, False)

        if args.exit_interval and iteration % args.exit_interval == 0:
            torch.distributed.barrier()
            time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            rank = torch.distributed.get_rank()
            print('rank: {} | time: {} | exiting the program at iteration {}'.
                  format(rank, time_str, iteration), flush=True)
            exit()
Raul Puri's avatar
Raul Puri committed
375
376
377
378

    return iteration, skipped_iters


379
def evaluate(data_iterator, model, args, timers, verbose = False):
Raul Puri's avatar
Raul Puri committed
380
381
382
383
384
385
386
387
388
389
    """Evaluation."""

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_lm_loss = 0
    total_nsp_loss = 0

    with torch.no_grad():
        iteration = 0
390
391
392
393
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration, args.eval_iters))
Raul Puri's avatar
Raul Puri committed
394
            # Forward evaluation.
395
396
            lm_loss, nsp_loss = forward_step(data_iterator, model,
                                             args, timers)
Raul Puri's avatar
Raul Puri committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
            # Reduce across processes.
            if isinstance(model, DDP):
                reduced_losses = torch.cat((lm_loss.view(1), nsp_loss.view(1)))
                torch.distributed.all_reduce(reduced_losses.data)
                reduced_losses.data = reduced_losses.data/args.world_size
                lm_loss = reduced_losses[0]
                nsp_loss = reduced_losses[1]

            total_lm_loss += lm_loss.data.detach().float().item()
            total_nsp_loss += nsp_loss.data.detach().float().item()

    # Move model back to the train mode.
    model.train()

411
412
    total_lm_loss /= args.eval_iters
    total_nsp_loss /= args.eval_iters
Raul Puri's avatar
Raul Puri committed
413
414
415
    return total_lm_loss, total_nsp_loss


416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
def evaluate_and_print_results(prefix, data_iterator, model,
                               args, timers, verbose=False):
    """Helper function to evaluate and dump results on screen."""
    lm_loss, nsp_loss = evaluate(data_iterator, model,
                                 args, timers, verbose)
    val_loss = lm_loss + nsp_loss
    print_rank_0('-' * 100)
    string = ' validation loss at {} | '.format(prefix)
    string += 'LM loss: {:.6E} | '.format(lm_loss)
    string += 'NSP loss: {:.6E} | '.format(nsp_loss)
    string += 'total loss: {:.6E}'.format(val_loss)
    length = len(string) + 1
    print_rank_0('-' * length)
    print_rank_0(string)
    print_rank_0('-' * length)

    return val_loss


Raul Puri's avatar
Raul Puri committed
435
436
437
438
439
440
441
442
443
def initialize_distributed(args):
    """Initialize torch.distributed."""

    # Manually set the device ids.
    device = args.rank % torch.cuda.device_count()
    if args.local_rank is not None:
        device = args.local_rank
    torch.cuda.set_device(device)
    # Call the init process
444
445
446
447
448
449
450
451
452
453
454
    init_method = 'tcp://'
    master_ip = os.getenv('MASTER_ADDR', 'localhost')
    master_port = os.getenv('MASTER_PORT', '6000')
    init_method += master_ip + ':' + master_port
    torch.distributed.init_process_group(
        backend=args.distributed_backend,
        world_size=args.world_size, rank=args.rank,
        init_method=init_method)

    # Set the model-parallel / data-parallel communicators.
    mpu.initialize_model_parallel(args.model_parallel_size)
Raul Puri's avatar
Raul Puri committed
455
456
457
458
459
460
461
462
463


def set_random_seed(seed):
    """Set random seed for reproducability."""

    if seed is not None and seed > 0:
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        mpu.model_parallel_cuda_manual_seed(seed)


def get_train_val_test_data(args):
    """Load the data on rank zero and boradcast number of tokens to all GPUS."""

    (train_data, val_data, test_data) = (None, None, None)

    # Data loader only on rank 0 of each model parallel group.
    if mpu.get_model_parallel_rank() == 0:
        data_config = configure_data()
        data_config.set_defaults(data_set_type='BERT', transpose=False)
        (train_data, val_data, test_data), tokenizer = data_config.apply(args)
        before = tokenizer.num_tokens
        after = before
        multiple = args.make_vocab_size_divisible_by * \
                   mpu.get_model_parallel_world_size()
        while (after % multiple) != 0:
            after += 1
        print_rank_0('> padded vocab (size: {}) with {} dummy '
                     'tokens (new size: {})'.format(
                         before, after - before, after))
        # Need to broadcast num_tokens and num_type_tokens.
        token_counts = torch.cuda.LongTensor([after,
                                              tokenizer.num_type_tokens,
                                              int(args.do_train), int(args.do_valid), int(args.do_test)])
    else:
        token_counts = torch.cuda.LongTensor([0, 0, 0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(token_counts,
                                mpu.get_model_parallel_src_rank(),
                                group=mpu.get_model_parallel_group())
    num_tokens = token_counts[0].item()
    num_type_tokens = token_counts[1].item()
    args.do_train = token_counts[2].item()
    args.do_valid = token_counts[3].item()
    args.do_test = token_counts[4].item()

    return train_data, val_data, test_data, num_tokens, num_type_tokens
Raul Puri's avatar
Raul Puri committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519


def main():
    """Main training program."""

    # Disable CuDNN.
    torch.backends.cudnn.enabled = False

    # Timer.
    timers = Timers()

    # Arguments.
    args = get_args()

    # Pytorch distributed.
    initialize_distributed(args)
520
521
522
    if torch.distributed.get_rank() == 0:
        print('Pretrain BERT model')
        print_args(args)
Raul Puri's avatar
Raul Puri committed
523
524
525
526
527

    # Random seeds for reproducability.
    set_random_seed(args.seed)

    # Data stuff.
528
529
    train_data, val_data, test_data, args.tokenizer_num_tokens, \
        args.tokenizer_num_type_tokens = get_train_val_test_data(args)
Raul Puri's avatar
Raul Puri committed
530
531

    # Model, optimizer, and learning rate.
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
    model, optimizer, lr_scheduler = setup_model_and_optimizer(args)

    if args.resume_dataloader:
        if train_data is not None:
            train_data.batch_sampler.start_iter = args.iteration % \
                                                  len(train_data)
        if val_data is not None:
            start_iter_val = (args.train_iters // args.save_interval) * \
                             args.eval_interval
            val_data.batch_sampler.start_iter = start_iter_val % \
                                                len(val_data)

    if train_data is not None:
        train_data_iterator = iter(train_data)
    else:
        train_data_iterator = None
    if val_data is not None:
        val_data_iterator = iter(val_data)
    else:
        val_data_iterator = None

    iteration = 0
    if args.train_iters > 0:
        if args.do_train:
            iteration, skipped = train(model, optimizer,
                                       lr_scheduler,
                                       train_data_iterator,
                                       val_data_iterator,
                                       timers, args)
        if args.do_valid:
            prefix = 'the end of training for val data'
            val_loss = evaluate_and_print_results(prefix, val_data_iterator,
                                                  model, args, timers, False)

    if args.save and iteration != 0:
        save_checkpoint(iteration, model, optimizer, lr_scheduler, args)
Raul Puri's avatar
Raul Puri committed
568
569

    if test_data is not None:
570
571
572
573
574
        test_data_iterator = iter(test_data)
    else:
        test_data_iterator = None

    if args.do_test:
Raul Puri's avatar
Raul Puri committed
575
        # Run on test data.
576
577
578
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, test_data_iterator,
                                   model, args, timers, True)
Raul Puri's avatar
Raul Puri committed
579
580
581
582


if __name__ == "__main__":
    main()