mappings.py 4.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch

from .initialize import get_model_parallel_group
from .utils import split_tensor_along_last_dim


def _reduce(input_):
    """All-reduce the the input tensor across model parallel group."""
    group = get_model_parallel_group()

    # Bypass the function if we are using only 1 GPU.
    if torch.distributed.get_world_size(group=group) == 1:
        return input_

    # All-reduce.
    torch.distributed.all_reduce(input_, group=group)

    return input_


def _split(input_):
    """Split the tensor along its last dimension and keep the
    corresponding slice."""
    group = get_model_parallel_group()

    # Bypass the function if we are using only 1 GPU.
    if torch.distributed.get_world_size(group=group) == 1:
        return input_

    # Split along last dimension.
    world_size = torch.distributed.get_world_size(group=group)
    input_list = split_tensor_along_last_dim(input_, world_size)

    # Note: torch.split does not create contiguous tensors by default.
    rank = torch.distributed.get_rank(group=group)
    output = input_list[rank].contiguous()

    return output


def _gather(input_):
    """Gather tensors and concatinate along the last dimension."""
    group = get_model_parallel_group()

    # Bypass the function if we are using only 1 GPU.
    if torch.distributed.get_world_size(group=group) == 1:
        return input_

    # Size and dimension.
    last_dim = input_.dim() - 1
    rank = torch.distributed.get_rank(group=group)
    world_size = torch.distributed.get_world_size(group=group)

    tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
    tensor_list[rank] = input_
    torch.distributed.all_gather(tensor_list, input_, group=group)

    # Note: torch.cat already creates a contiguous tensor.
    output = torch.cat(tensor_list, dim=last_dim).contiguous()

    return output


class _CopyToModelParallelRegion(torch.autograd.Function):
    """Pass the input to the model parallel region."""

    @staticmethod
    def forward(ctx, input_):
        return input_

    @staticmethod
    def backward(ctx, grad_output):
        return _reduce(grad_output)


class _ReduceFromModelParallelRegion(torch.autograd.Function):
    """All-redcue the input from the model parallel region."""

    @staticmethod
    def forward(ctx, input_):
        return _reduce(input_)

    @staticmethod
    def backward(ctx, grad_output):
        return grad_output


class _ScatterToModelParallelRegion(torch.autograd.Function):
    """Split the input and keep only the corresponding chuck to the rank."""

    @staticmethod
    def forward(ctx, input_):
        return _split(input_)

    @staticmethod
    def backward(ctx, grad_output):
        return _gather(grad_output)


class _GatherFromModelParallelRegion(torch.autograd.Function):
    """Gather the input from model parallel region and concatinate."""

    @staticmethod
    def forward(ctx, input_):
        return _gather(input_)

    @staticmethod
    def backward(ctx, grad_output):
        return _split(grad_output)


# -----------------
# Helper functions.
# -----------------

def copy_to_model_parallel_region(input_):
    return _CopyToModelParallelRegion.apply(input_)

def reduce_from_model_parallel_region(input_):
    return _ReduceFromModelParallelRegion.apply(input_)

def scatter_to_model_parallel_region(input_):
    return _ScatterToModelParallelRegion.apply(input_)

def gather_from_model_parallel_region(input_):
    return _GatherFromModelParallelRegion.apply(input_)