model.py 3.67 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Utilities for wrapping BertModel."""

import torch

from .modeling import BertConfig
21
from .modeling import BertForPreTraining, BertForMaskedLM
Raul Puri's avatar
Raul Puri committed
22
23
24
25
26
27
from .modeling import BertLayerNorm


def get_params_for_weight_decay_optimization(module):

    weight_decay_params = {'params': []}
28
    no_weight_decay_params = {'params': [], 'weight_decay': 0.0}
Raul Puri's avatar
Raul Puri committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    for module_ in module.modules():
        if isinstance(module_, (BertLayerNorm, torch.nn.LayerNorm)):
            no_weight_decay_params['params'].extend(
                [p for p in list(module_._parameters.values())
                 if p is not None])
        else:
            weight_decay_params['params'].extend(
                [p for n, p in list(module_._parameters.items())
                 if p is not None and n != 'bias'])
            no_weight_decay_params['params'].extend(
                [p for n, p in list(module_._parameters.items())
                 if p is not None and n == 'bias'])

    return weight_decay_params, no_weight_decay_params


class BertModel(torch.nn.Module):

47
    def __init__(self, args):
Raul Puri's avatar
Raul Puri committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        super(BertModel, self).__init__()
        if args.pretrained_bert:
            self.model = BertForPreTraining.from_pretrained(
                args.tokenizer_model_type,
                cache_dir=args.cache_dir,
                fp32_layernorm=args.fp32_layernorm,
                fp32_embedding=args.fp32_embedding,
                layernorm_epsilon=args.layernorm_epsilon)
        else:
            if args.intermediate_size is None:
                intermediate_size = 4 * args.hidden_size
            else:
                intermediate_size = args.intermediate_size
            self.config = BertConfig(
62
                args.tokenizer_num_tokens,
Raul Puri's avatar
Raul Puri committed
63
64
65
66
67
68
69
                hidden_size=args.hidden_size,
                num_hidden_layers=args.num_layers,
                num_attention_heads=args.num_attention_heads,
                intermediate_size=intermediate_size,
                hidden_dropout_prob=args.hidden_dropout,
                attention_probs_dropout_prob=args.attention_dropout,
                max_position_embeddings=args.max_position_embeddings,
70
                type_vocab_size=args.tokenizer_num_type_tokens,
Raul Puri's avatar
Raul Puri committed
71
72
73
                fp32_layernorm=args.fp32_layernorm,
                fp32_embedding=args.fp32_embedding,
                fp32_tokentypes=args.fp32_tokentypes,
74
75
                layernorm_epsilon=args.layernorm_epsilon,
                deep_init=args.deep_init)
Raul Puri's avatar
Raul Puri committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
            self.model = BertForPreTraining(self.config)

    def forward(self, input_tokens, token_type_ids=None,
                attention_mask=None, checkpoint_activations=False):
        return self.model(
            input_tokens, token_type_ids, attention_mask,
            checkpoint_activations=checkpoint_activations)

    def state_dict(self, destination=None, prefix='', keep_vars=False):
        return self.model.state_dict(destination=destination, prefix=prefix,
                                     keep_vars=keep_vars)

    def load_state_dict(self, state_dict, strict=True):
        return self.model.load_state_dict(state_dict, strict=strict)
90