distributed.py 4.78 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
import torch.distributed as dist
from torch.nn.modules import Module
from torch.autograd import Variable

22
import mpu
Raul Puri's avatar
Raul Puri committed
23
24
25
26
27
28
29
30

class DistributedDataParallel(Module):

    def __init__(self, module):
        super(DistributedDataParallel, self).__init__()
        self.warn_on_half = True if dist._backend == dist.dist_backend.GLOO else False

        self.module = module
31
32
        self.data_parallel_group = mpu.get_data_parallel_group()
        src_rank = mpu.get_model_parallel_rank()
Raul Puri's avatar
Raul Puri committed
33
34
        for p in self.module.parameters():
            if torch.is_tensor(p):
35
                dist.broadcast(p, src_rank, group=self.data_parallel_group)
Raul Puri's avatar
Raul Puri committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

        def allreduce_params(reduce_after=True, no_scale=False, fp32_allreduce=False):
            if(self.needs_reduction):
                self.needs_reduction = False
                buckets = {}
                for name, param in self.module.named_parameters():
                    if param.requires_grad and param.grad is not None:
                        tp = (param.data.type())
                        if tp not in buckets:
                            buckets[tp] = []
                        buckets[tp].append(param)
                if self.warn_on_half:
                    if torch.cuda.HalfTensor in buckets:
                        print("WARNING: gloo dist backend for half parameters may be extremely slow." +
                              " It is recommended to use the NCCL backend in this case.")
                        self.warn_on_half = False
                for tp in buckets:
                    bucket = buckets[tp]
                    grads = [param.grad.data for param in bucket]
                    coalesced = _flatten_dense_tensors(grads)
                    if fp32_allreduce:
                        coalesced = coalesced.float()
                    if not no_scale and not reduce_after:
59
60
                        coalesced /= dist.get_world_size(group=self.data_parallel_group)
                    dist.all_reduce(coalesced, group=self.data_parallel_group)
Raul Puri's avatar
Raul Puri committed
61
62
                    torch.cuda.synchronize()
                    if not no_scale and reduce_after:
63
                        coalesced /= dist.get_world_size(group=self.data_parallel_group)
Raul Puri's avatar
Raul Puri committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
                    for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
                        buf.copy_(synced)
        self.hook_handles = []
        self.hooks = []
        for param in list(self.module.parameters()):
            def allreduce_hook(*unused):
                Variable._execution_engine.queue_callback(allreduce_params)
        #    handle = param.register_hook(allreduce_hook)
            #self.hooks.append(allreduce_hook)
            #self.hook_handles.append(handle)
        self.allreduce_params = allreduce_params

    def forward(self, *inputs, **kwargs):
        self.needs_reduction = True
        return self.module(*inputs, **kwargs)

    def state_dict(self, destination=None, prefix='', keep_vars=False):
        #[h.remove() for h in self.hook_handles]
        sd = self.module.state_dict(destination, prefix, keep_vars)
       # for handle, hook in zip(self.hook_handles, self.hooks):
       #     d = handle.hooks_dict_ref()
       #     d[handle.id] = hook

        return sd

    def load_state_dict(self, state_dict, strict=True):
        self.module.load_state_dict(state_dict, strict=strict)

    '''
    def _sync_buffers(self):
        buffers = list(self.module._all_buffers())
        if len(buffers) > 0:
            # cross-node buffer sync
            flat_buffers = _flatten_dense_tensors(buffers)
            dist.broadcast(flat_buffers, 0)
            for buf, synced in zip(buffers, _unflatten_dense_tensors(flat_buffers, buffers)):
                buf.copy_(synced)
    def train(self, mode=True):
        # Clear NCCL communicator and CUDA event cache of the default group ID,
        # These cache will be recreated at the later call. This is currently a
        # work-around for a potential NCCL deadlock.
        if dist._backend == dist.dist_backend.NCCL:
            dist._clear_group_cache()
        super(DistributedDataParallel, self).train(mode)
        self.module.train(mode)
    '''