learning_rates.py 2.98 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch DataLoader for TFRecords"""

17
import torch
Raul Puri's avatar
Raul Puri committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from torch.optim.lr_scheduler import _LRScheduler
import math

class AnnealingLR(_LRScheduler):
    """Anneals the learning rate from start to zero along a cosine curve."""

    DECAY_STYLES = ['linear', 'cosine', 'exponential', 'constant', 'None']

    def __init__(self, optimizer, start_lr, warmup_iter, num_iters, decay_style=None, last_iter=-1):
        self.optimizer = optimizer
        self.start_lr = start_lr
        self.warmup_iter = warmup_iter
        self.num_iters = last_iter + 1
        self.end_iter = num_iters
        self.decay_style = decay_style.lower() if isinstance(decay_style, str) else None
        self.step(self.num_iters)
34
35
        if torch.distributed.get_rank() == 0:
            print('learning rate decaying', decay_style)
Raul Puri's avatar
Raul Puri committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

    def get_lr(self):
        # https://openreview.net/pdf?id=BJYwwY9ll pg. 4
        if self.warmup_iter > 0 and self.num_iters <= self.warmup_iter:
            return float(self.start_lr) * self.num_iters / self.warmup_iter
        else:
            if self.decay_style == self.DECAY_STYLES[0]:
                return self.start_lr*((self.end_iter-(self.num_iters-self.warmup_iter))/self.end_iter)
            elif self.decay_style == self.DECAY_STYLES[1]:
                return self.start_lr / 2.0 * (math.cos(math.pi * (self.num_iters - self.warmup_iter) / self.end_iter) + 1)
            elif self.decay_style == self.DECAY_STYLES[2]:
                #TODO: implement exponential decay
                return self.start_lr
            else:
                return self.start_lr

    def step(self, step_num=None):
        if step_num is None:
            step_num = self.num_iters + 1
        self.num_iters = step_num
        new_lr = self.get_lr()
        for group in self.optimizer.param_groups:
            group['lr'] = new_lr

    def state_dict(self):
        sd = {
                'start_lr': self.start_lr,
                'warmup_iter': self.warmup_iter,
                'num_iters': self.num_iters,
                'decay_style': self.decay_style,
                'end_iter': self.end_iter
        }
        return sd

    def load_state_dict(self, sd):
        self.start_lr = sd['start_lr']
        self.warmup_iter = sd['warmup_iter']
        self.num_iters = sd['num_iters']
        self.end_iter = sd['end_iter']
        self.decay_style = sd['decay_style']
        self.step(self.num_iters)