__init__.py 5.23 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""utils for creating datasets"""
import os
import math

from .samplers import DistributedBatchSampler
20
from .datasets import json_dataset, csv_dataset, split_ds, ConcatDataset, SplitDataset, bert_sentencepair_dataset, GPT2Dataset
Raul Puri's avatar
Raul Puri committed
21
from .lazy_loader import exists_lazy, make_lazy, lazy_array_loader
22
from .tokenization import Tokenization, CommandToken, Tokenizer, CharacterLevelTokenizer, BertWordPieceTokenizer, GPT2BPETokenizer, make_tokenizer
Raul Puri's avatar
Raul Puri committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from . import corpora

TRAIN_DATA = 0
VAL_DATA = 1
TEST_DATA = 2

def should_split(split):
    """
    given split proportions checks if should split
    Examples:
    >>> should_split([10,0,0]) 
    False
    >>> should_split([1,.1,.2])
    True
    """
    return max(split)/sum(split) != 1.

def get_ext(path):
    """gets path extension"""
    return os.path.splitext(path)[1]

def get_dataset(path, **kwargs):
    """gets dataset object based on keyword args and file at `path`"""
    if supported_corpus(path):
        return corpora.NAMED_CORPORA[path](**kwargs)
    ext = get_ext(path)
Raul Puri's avatar
Raul Puri committed
49
    if '.json' in ext:
Raul Puri's avatar
Raul Puri committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        text = json_dataset(path, **kwargs)
    elif ext in ['.csv', '.tsv']:
        text = csv_dataset(path, **kwargs)
    else:
        raise NotImplementedError('data file type %s is not supported'%(ext))
    return text

def supported_corpus(corpus_name):
    """checks if corpus name is defined in `corpora.py`"""
    return corpus_name in corpora.NAMED_CORPORA

def make_dataset(path, seq_length, text_key, label_key, lazy=False, process_fn=None, split=[1.],
                delim=',', loose=False, binarize_sent=False, drop_unlabeled=False, tokenizer=None,
                tokenizer_type='CharacterLevelTokenizer', tokenizer_model_path=None, vocab_size=None,
                model_type='bpe', pad_token=0, character_converage=1.0, non_binary_cols=None, **kwargs):
    """function to create datasets+tokenizers for common options"""
    if isinstance(process_fn, str):
        process_fn = eval(process_fn)
    if non_binary_cols is not None:
        # multilabel dataset support (only for csvs)
        label_key = non_binary_cols
    def get_dataset_from_path(path_):
        if lazy:
            # get lazily loaded dataset
            named_corpora = False
            if supported_corpus(path_):
                named_corpora = True
                name = path_
                path_ = corpora.NAMED_CORPORA[path_].PATH
            if not exists_lazy(path_, data_type='data'):
                # create cached version of dataset for lazy loading if it doesn't exist
                text = get_dataset(name if named_corpora else path_, text_key=text_key, label_key=label_key, binarize_sent=binarize_sent,
                    delim=delim, drop_unlabeled=drop_unlabeled, loose_json=loose)
                make_lazy(path_, text.X, data_type='data')
            text = lazy_array_loader(path_, data_type='data', map_fn=process_fn)
        else:
            # get dataset
            text = get_dataset(path_, text_key=text_key, label_key=label_key, binarize_sent=binarize_sent,
                    delim=delim, drop_unlabeled=drop_unlabeled, loose_json=loose, preprocess_fn=process_fn)
        return text
    # get one or multiple datasets and concatenate
    if isinstance(path, str):
        path = [path]
    datasets = [get_dataset_from_path(p) for p in path]
    if len(datasets) == 1:
        ds = datasets[0]
    else:
        ds = ConcatDataset(datasets)
    # make tokenizer for dataset
    if tokenizer is None:
        tokenizer = make_tokenizer(tokenizer_type, ds, tokenizer_model_path, vocab_size, model_type, 
                                    pad_token, character_converage, **kwargs)

    ds_type = ''
    if 'ds_type' in kwargs:
        ds_type = kwargs['ds_type']
    ds.SetTokenizer(tokenizer)
    # Split dataset into train/val/test (and wrap bert dataset)
    if should_split(split):
        ds = split_ds(ds, split)
        if ds_type.lower() == 'bert':
Raul Puri's avatar
Raul Puri committed
111
            presplit_sentences = kwargs['presplit_sentences'] if 'presplit_sentences' in kwargs else False
112
113
114
            ds = [bert_sentencepair_dataset(d, max_seq_len=seq_length, presplit_sentences=presplit_sentences)  if d is not None else None  for d in ds]
        elif ds_type.lower() == 'gpt2':
            ds = [GPT2Dataset(d, max_seq_len=seq_length) if d is not None else None for d in ds]
Raul Puri's avatar
Raul Puri committed
115
116
    else:
        if ds_type.lower() == 'bert':
Raul Puri's avatar
Raul Puri committed
117
118
            presplit_sentences = kwargs['presplit_sentences'] if 'presplit_sentences' in kwargs else False
            ds = bert_sentencepair_dataset(ds, max_seq_len=seq_length, presplit_sentences=presplit_sentences)
119
120
        elif ds_type.lower() == 'gpt2':
            ds = GPT2Dataset(ds, max_seq_len=seq_length)
Raul Puri's avatar
Raul Puri committed
121
    return ds, tokenizer