fused_layer_norm.py 3.62 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""This code is copied fron NVIDIA apex:
      https://github.com/NVIDIA/apex
18
   with some changes. """
19
20

import numbers
21
import torch
22
23
24
25
from torch.nn.parameter import Parameter
from torch.nn import init
import importlib

26
27
28
29
30
try:
    from apex.contrib.layer_norm.layer_norm import FastLayerNormFN
    HAVE_PERSIST_LAYER_NORM = True
except:
    HAVE_PERSIST_LAYER_NORM = False
Sangkug Lym's avatar
Sangkug Lym committed
31

32
33
34
global fused_mix_prec_layer_norm_cuda
fused_mix_prec_layer_norm_cuda = None

35

36
37
38
39
class FusedLayerNormAffineFunction(torch.autograd.Function):

  @staticmethod
  def forward(ctx, input, weight, bias, normalized_shape, eps):
40

41
42
43
44
45
46
47
48
    ctx.normalized_shape = normalized_shape
    ctx.eps = eps
    input_ = input.contiguous()
    weight_ = weight.contiguous()
    bias_ = bias.contiguous()
    output, mean, invvar = fused_mix_prec_layer_norm_cuda.forward_affine(
        input_, ctx.normalized_shape, weight_, bias_, ctx.eps)
    ctx.save_for_backward(input_, weight_, bias_, mean, invvar)
49

50
51
    return output

52

53
54
  @staticmethod
  def backward(ctx, grad_output):
55

56
57
    input_, weight_, bias_, mean, invvar = ctx.saved_tensors
    grad_input = grad_weight = grad_bias = None
58
59
    grad_input, grad_weight, grad_bias \
      = fused_mix_prec_layer_norm_cuda.backward_affine(
60
61
62
63
        grad_output.contiguous(), mean, invvar,
        input_, ctx.normalized_shape,
        weight_, bias_, ctx.eps)

64
    return grad_input, grad_weight, grad_bias, None, None
65
66
67
68



class MixedFusedLayerNorm(torch.nn.Module):
69

Sangkug Lym's avatar
Sangkug Lym committed
70
  def __init__(self, normalized_shape, eps=1e-5, no_persist_layer_norm=True):
71
72
73
        super(MixedFusedLayerNorm, self).__init__()

        global fused_mix_prec_layer_norm_cuda
74
75
        fused_mix_prec_layer_norm_cuda = importlib.import_module(
          "fused_mix_prec_layer_norm_cuda")
76

Sangkug Lym's avatar
Sangkug Lym committed
77
78
79
80
81
82
        # List of hiddens sizes supported in the persistent layer norm kernel
        # If the hidden size is not supported, fall back to the non-persistent
        # kernel.
        persist_ln_hidden_sizes = [1024, 1536, 2048, 2304, 3072, 3840, 4096,
            5120, 6144, 8192, 10240, 12288, 12800, 15360, 16384, 18432, 20480,
            24576, 25600, 30720, 32768, 40960, 49152, 65536]
83
84
        if normalized_shape not in persist_ln_hidden_sizes or \
                not HAVE_PERSIST_LAYER_NORM:
Sangkug Lym's avatar
Sangkug Lym committed
85
86
            no_persist_layer_norm = True

87
88
89
90
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        self.normalized_shape = torch.Size(normalized_shape)
        self.eps = eps
91
92
        self.weight = Parameter(torch.Tensor(*normalized_shape))
        self.bias = Parameter(torch.Tensor(*normalized_shape))
93
        self.reset_parameters()
Sangkug Lym's avatar
Sangkug Lym committed
94
        self.no_persist_layer_norm = no_persist_layer_norm
95

96
97
98
99
100
101
102
103
104

  def reset_parameters(self):

    init.ones_(self.weight)
    init.zeros_(self.bias)


  def forward(self, input):

Sangkug Lym's avatar
Sangkug Lym committed
105
106
107
108
109
110
    if self.no_persist_layer_norm:
        return FusedLayerNormAffineFunction.apply(
          input, self.weight, self.bias, self.normalized_shape, self.eps)
    else:
        return FastLayerNormFN.apply(
          input, self.weight, self.bias, self.eps)
111