split_gpt2_json.py 4.19 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""
Takes a corpora of files (specified by `--input_files`) with json data separated
by newlines (loose json). Splits data into train.json, val.json, test.json files
under `output_dir`.

Note: This code has the potential to override files with the names 
train.json, val.json, test.json in `--output_dir`.
"""
import os
import argparse
import math
import random

parser = argparse.ArgumentParser('resplit loose json data into train/val/test')
parser.add_argument('--input_files', nargs='+', required=True,
                    help='whitespace separated list of input data files')
parser.add_argument('--output_dir', required=True,
                    help='output directory where to put files')
parser.add_argument('--test_percent', type=float, nargs='+', default=[0.05, 0],
                    help='percentage of available data to use for val/test dataset')
args = parser.parse_args()

def get_lines(filepath):
    lines = []
    with open(filepath, 'r') as f:
        for i, l in enumerate(f.readlines()):
            l = l.strip()
            lines.append(l)
    return lines

def get_splits(lines, line_counts):
    all_lines = []
    line_idx = []
    file_mappings = []
    for i, l in enumerate(lines):
        all_lines.extend(l)
        line_idx.extend(list(range(len(l))))
        file_mappings.extend([i]*len(l))

    indices = list(range(len(all_lines)))
    random.shuffle(indices)
    all_lines = [all_lines[idx] for idx in indices]
    line_idx = [line_idx[idx] for idx in indices]
    file_mappings = [file_mappings[idx] for idx in indices]
    
    splits = []
    mappings = []
    start = 0
    for end in line_counts:
        end += start
        splits.append(all_lines[start:end])
        mappings.append(format_mappings(line_idx[start:end], file_mappings[start:end]))
        start = end
    return splits, mappings

def format_mappings(line_idx, file_mappings):
    lines = []
    for m, l in zip(file_mappings, line_idx):
        lines.append(str(m).strip()+'\t'+str(l).strip())
    return lines


def get_filepaths(filepaths, output_dir):
    paths = []
    train_path = 'train.json'
    dev_path = 'dev.json'
    test_path = 'test.json'
    paths.append(os.path.join(output_dir, train_path))
    paths.append(os.path.join(output_dir, dev_path))
    paths.append(os.path.join(output_dir, test_path))
    return paths

def write_files(lines, mappings, filepaths):
    for l, m, path in zip(lines, mappings, filepaths):
        write_file(l, path)
        write_mapping_file(m, path)

def write_file(lines, path):
    print('Writing:', path)
    with open(path, 'w') as f:
        for l in lines:
            f.write(l+'\n')

def write_mapping_file(m, path):
    path = path+'.map'
    m = [get_mapping_header()]+m
    write_file(m, path)

def get_mapping_header():
    return 'file\tline #'

if not os.path.exists(args.output_dir):
    os.makedirs(args.output_dir)

lines = []

for filepath in args.input_files:
    _lines = get_lines(filepath)
    lines.append(_lines)

#calculate number of lines to use for each
line_counts = [len(l) for l in lines]
total_lines = sum(line_counts)
dev_percent = args.test_percent[0]
dev_lines = math.ceil(dev_percent*total_lines)
test_percent = 0
if len(args.test_percent)==2:
    test_percent=args.test_percent[1]
test_lines = math.ceil(test_percent*total_lines)
train_lines = total_lines-(test_lines+dev_lines)
normed_lines = [train_lines, dev_lines, test_lines]
normed_lines = [int(l) for l in normed_lines]


splits, mappings = get_splits(lines, normed_lines)
filepaths = get_filepaths(args.input_files, args.output_dir)
print('Writing output to:', filepaths)
write_files(splits, mappings, filepaths)