transformer.py 27.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""

import math

import torch
import torch.nn.init as init
from apex.normalization.fused_layer_norm import FusedLayerNorm as LayerNorm

from .initialize import get_model_parallel_world_size
from .layers import ColumnParallelLinear
from .layers import RowParallelLinear
from .mappings import gather_from_model_parallel_region
from .random import checkpoint
from .random import get_cuda_rng_tracker
from .utils import divide
from .utils import split_tensor_along_last_dim


class GPT2ParallelSelfAttention(torch.nn.Module):
    """Parallel self-attention layer for GPT2.

    Self-attention layer takes input with size [b, s, h] where b is
    the batch size, s is the sequence lenght, and h is the hidden size
    and creates output of the same size.
    Arguments:
        hidden_size: total hidden size of the layer (h).
        num_attention_heads: number of attention heads (n). Note that we
                             require n to be divisible by number of GPUs
                             used to parallelize the model. Also, we
                             require hidden size to be divisible by n.
        dropout_prob: dropout probability for the attention scores.
        init_method: weight initialization.
        output_layer_init_method: output layer initialization. If None, use
                                  `init_method`.
    We use the following notation:
        h: hidden_size
        n: num_attention_heads
        p: number of partitions
        np: n/p
        hp: h/p
        hn: h/n
        b: batch size
        s: sequence length
    """
    def __init__(self, hidden_size, num_attention_heads,
                 attention_dropout_prob, output_dropout_prob,
                 init_method, output_layer_init_method=None):
        super(GPT2ParallelSelfAttention, self).__init__()
        # Set output layer initialization if not provided.
        if output_layer_init_method is None:
            output_layer_init_method = init_method
        # Per attention head and per partition values.
        world_size = get_model_parallel_world_size()
        self.hidden_size_per_partition = divide(hidden_size, world_size)
        self.hidden_size_per_attention_head = divide(hidden_size,
                                                     num_attention_heads)
        self.num_attention_heads_per_partition = divide(num_attention_heads,
                                                        world_size)
        # Strided linear layer.
        self.query_key_value = ColumnParallelLinear(hidden_size, 3*hidden_size,
                                                    stride=3,
                                                    gather_output=False,
                                                    init_method=init_method)
        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(attention_dropout_prob)

        # Output.
        self.dense = RowParallelLinear(hidden_size,
                                       hidden_size,
                                       input_is_parallel=True,
                                       init_method=output_layer_init_method)
        self.output_dropout = torch.nn.Dropout(output_dropout_prob)

    def _transpose_for_scores(self, tensor):
        """Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with
        size [b, np, s, hn].
        """
        new_tensor_shape = tensor.size()[:-1] + \
                           (self.num_attention_heads_per_partition,
                            self.hidden_size_per_attention_head)
        tensor = tensor.view(*new_tensor_shape)
        return tensor.permute(0, 2, 1, 3)

101
    def forward(self, hidden_states, ltor_mask, layer_past=None, get_present=False):
102
103
104
105
106
107
108
109
110
111
112
113
114
        # hidden_states: [b, s, h]
        # ltor_mask: [1, 1, s, s]

        # Attention heads. [b, s, hp]
        mixed_x_layer = self.query_key_value(hidden_states)
        (mixed_query_layer,
         mixed_key_layer,
         mixed_value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)

        # Reshape and transpose [b, np, s, hn]
        query_layer = self._transpose_for_scores(mixed_query_layer)
        key_layer = self._transpose_for_scores(mixed_key_layer)
        value_layer = self._transpose_for_scores(mixed_value_layer)
115
116
117
118
119
        if layer_past is not None:
            past_key, past_value = layer_past
            key_layer = torch.cat((past_key.type_as(key_layer), key_layer), dim=-2)
            value_layer = torch.cat((past_value.type_as(value_layer), value_layer), dim=-2)
        present = (key_layer, value_layer)
120
121

        # Raw attention scores. [b, np, s, s]
122
123
124
125
        norm_factor = math.sqrt(math.sqrt(self.hidden_size_per_attention_head))
        attention_scores = torch.matmul(query_layer/norm_factor,
                                        key_layer.transpose(-1, -2)/norm_factor)
                                        
126
        # Apply the left to right attention mask.
127
128
129
130
131
132
        if get_present:
            with torch.no_grad():
                if layer_past is not None:
                    ltor_mask = ltor_mask[...,attention_scores.size(3)-1, :attention_scores.size(3)].unsqueeze(2)
                else:
                    ltor_mask = ltor_mask[...,:attention_scores.size(3), :attention_scores.size(3)]
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        attention_scores = torch.mul(attention_scores, ltor_mask) - \
                           10000.0 * (1.0 - ltor_mask)

        # Attention probabilities. [b, np, s, s]
        attention_probs = torch.nn.Softmax(dim=-1)(attention_scores)
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        with get_cuda_rng_tracker().fork():
            attention_probs = self.attention_dropout(attention_probs)

        # Context layer.
        # [b, np, s, hn]
        context_layer = torch.matmul(attention_probs, value_layer)
        # [b, s, np, hn]
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + \
                                  (self.hidden_size_per_partition,)
        # [b, s, hp]
        context_layer = context_layer.view(*new_context_layer_shape)

        # Output. [b, s, h]
        output = self.dense(context_layer)
        output = self.output_dropout(output)

157
158
159
        if get_present:
            output = [output, present]

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        return output


@torch.jit.script
def gelu_impl(x):
     """OpenAI's gelu implementation."""
     return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
                                        (1.0 + 0.044715 * x * x)))

def gelu(x):
    return gelu_impl(x)


class GPT2ParallelMLP(torch.nn.Module):
    """MLP for GPT2.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform gelu transformation, and project the
    state back into h hidden dimension. At the end, dropout is also
    applied.

    Arguments:
        hidden_size: The hidden size of the self attention.
        output_dropout_prob: dropout probability for the outputs
                             after self attention and final output.
        init_method: initialization method used for the weights. Note
                     that all biases are initialized to zero and
                     layernorm weight are initialized to one.
        output_layer_init_method: output layer initialization. If None,
                                  use `init_method`.
    """

    def __init__(self, hidden_size, output_dropout_prob, init_method,
                 output_layer_init_method=None):
        super(GPT2ParallelMLP, self).__init__()
        # Set output layer initialization if not provided.
        if output_layer_init_method is None:
            output_layer_init_method = init_method
        # Project to 4h.
        self.dense_h_to_4h = ColumnParallelLinear(hidden_size, 4*hidden_size,
                                                  gather_output=False,
                                                  init_method=init_method)
        # Project back to h.
        self.dense_4h_to_h = RowParallelLinear(
            4*hidden_size,
            hidden_size,
            input_is_parallel=True,
            init_method=output_layer_init_method)
        self.dropout = torch.nn.Dropout(output_dropout_prob)

    def forward(self, hidden_states):
        # [b, s, 4hp]
        intermediate_parallel = self.dense_h_to_4h(hidden_states)
        intermediate_parallel = gelu(intermediate_parallel)

        # [b, s, h]
        output = self.dense_4h_to_h(intermediate_parallel)
        output = self.dropout(output)
        return output


class GPT2ParallelTransformerLayer(torch.nn.Module):
    """A single layer transformer for GPT2.

    We use the following notation:
        h: hidden size
        n: number of attention heads
        b: batch size
        s: sequence length
    Transformore layer takes input with size [b, s, h] and returns an
    output of the same size.

    Arguments:
        hidden_size: The hidden size of the self attention.
        num_attention_heads: number of attention head in the self
                             attention.
        attention_dropout_prob: dropout probability of the attention
                                score in self attention.
        output_dropout_prob: dropout probability for the outputs
                             after self attention and final output.
        layernorm_epsilon: epsilon used in layernorm to avoid
                           division by zero.
        init_method: initialization method used for the weights. Note
                     that all biases are initialized to zero and
                     layernorm weight are initialized to one.
        output_layer_init_method: output layers (attention output and
                                  mlp output) initialization. If None,
                                  use `init_method`.
    """
    def __init__(self,
                 hidden_size,
                 num_attention_heads,
                 attention_dropout_prob,
                 output_dropout_prob,
                 layernorm_epsilon,
                 init_method,
                 output_layer_init_method=None):
        super(GPT2ParallelTransformerLayer, self).__init__()
        # Set output layer initialization if not provided.
        if output_layer_init_method is None:
            output_layer_init_method = init_method

        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)

        # Self attention.
        self.attention = GPT2ParallelSelfAttention(
            hidden_size,
            num_attention_heads,
            attention_dropout_prob,
            output_dropout_prob,
            init_method,
            output_layer_init_method=output_layer_init_method)

        # Layernorm on the input data.
        self.post_attention_layernorm = LayerNorm(hidden_size,
                                                  eps=layernorm_epsilon)

        # MLP
        self.mlp = GPT2ParallelMLP(
            hidden_size,
            output_dropout_prob,
            init_method,
            output_layer_init_method=output_layer_init_method)

285
    def forward(self, hidden_states, ltor_mask, layer_past=None, get_present=False):
286
287
288
289
290
291
        # hidden_states: [b, s, h]
        # ltor_mask: [1, 1, s, s]

        # Layer norm at the begining of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
292
293
294
        attention_output = self.attention(layernorm_output, ltor_mask, layer_past=layer_past, get_present=get_present)
        if get_present:
            attention_output, presents = attention_output
295
296
297
298
299
300
301
302
303
        # Residual connection.
        layernorm_input = hidden_states + attention_output
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)
        # MLP.
        mlp_output = self.mlp(layernorm_output)
        # Second residual connection.
        output = layernorm_input + mlp_output

304
305
306
        if get_present:
            output = [output, presents]

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        return output


def unscaled_init_method(sigma):
    """Init method based on N(0, sigma)."""
    def init_(tensor):
        return torch.nn.init.normal_(tensor, mean=0.0, std=sigma)

    return init_


def scaled_init_method(sigma, num_layers):
    """Init method based on N(0, sigma/sqrt(2*num_layers)."""
    std = sigma / math.sqrt(2.0 * num_layers)
    def init_(tensor):
        return torch.nn.init.normal_(tensor, mean=0.0, std=std)

    return init_


class GPT2ParallelTransformer(torch.nn.Module):
    """GPT-2 transformer.

    This module takes input from embedding layer and it's output can
    be used directly by a logit layer. It consists of L (num-layers)
    blocks of:
        layer norm
        self attention
        residual connection
        layer norm
        mlp
        residual connection
    followed by a final layer norm.

    Arguments:
        num_layers: Number of transformer layers.
        hidden_size: The hidden size of the self attention.
        num_attention_heads: number of attention head in the self
                             attention.
        attention_dropout_prob: dropout probability of the attention
                                score in self attention.
        output_dropout_prob: dropout probability for the outputs
                             after self attention and final output.
        checkpoint_activations: if True, checkpoint activations.
        checkpoint_num_layers: number of layers to checkpoint. This
                               is basically the chunk size in checkpoitning.
        layernorm_epsilon: epsilon used in layernorm to avoid
                           division by zero.
        init_method_std: standard deviation of the init method which has
                         the form N(0, std).
        use_scaled_init_for_output_weights: If Ture use 1/sqrt(2*num_layers)
                                            scaling for the output weights (
                                            output of self attention and mlp).
    """
    def __init__(self,
                 num_layers,
                 hidden_size,
                 num_attention_heads,
                 attention_dropout_prob,
                 output_dropout_prob,
                 checkpoint_activations,
                 checkpoint_num_layers=1,
                 layernorm_epsilon=1.0e-5,
                 init_method_std=0.02,
                 use_scaled_init_for_output_weights=True):
        super(GPT2ParallelTransformer, self).__init__()
        # Store activation checkpoiting flag.
        self.checkpoint_activations = checkpoint_activations
        self.checkpoint_num_layers = checkpoint_num_layers

        output_layer_init_method = None
        if use_scaled_init_for_output_weights:
            output_layer_init_method = scaled_init_method(init_method_std,
                                                          num_layers)
        def get_layer():
            return GPT2ParallelTransformerLayer(
                hidden_size,
                num_attention_heads,
                attention_dropout_prob,
                output_dropout_prob,
                layernorm_epsilon,
                unscaled_init_method(init_method_std),
                output_layer_init_method=output_layer_init_method)

        # Transformer layers.
        self.layers = torch.nn.ModuleList(
            [get_layer() for _ in range(num_layers)])

        # Final layer norm before output.
        self.final_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)

398
    def forward(self, hidden_states, attention_mask, layer_past=None, get_present=False):
399
400
401
402
403
404
405
406
407
408

        def custom(start, end):
            def custom_forward(*inputs):
                layers_ = self.layers[start:end]
                x_ = inputs[0]
                for layer in layers_:
                    x_ = layer(x_, inputs[1])
                return x_
            return custom_forward

409
        if self.checkpoint_activations and not get_present:
410
411
412
413
414
415
416
417
            l = 0
            num_layers = len(self.layers)
            chunk_length = self.checkpoint_num_layers
            while l < num_layers:
                hidden_states = checkpoint(custom(l, l+chunk_length),
                                           hidden_states, attention_mask)
                l += chunk_length
        else:
418
419
420
421
422
423
424
425
426
            presents = []
            for i, layer in enumerate(self.layers):
                past = None
                if layer_past is not None:
                    past = layer_past[i]
                hidden_states = layer(hidden_states, attention_mask, layer_past=past, get_present=get_present)
                if get_present:
                    hidden_states, present = hidden_states
                    presents.append(present)
427
428
429

        # Final layer norm.
        output = self.final_layernorm(hidden_states)
430
431
        if get_present:
            output = [output, presents]
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

        return output


class BertParallelSelfAttention(torch.nn.Module):
    """Parallel self-attention layer for BERT.

    Self-attention layer takes input with size [b, s, h] where b is
    the batch size, s is the sequence lenght, and h is the hidden size
    and creates output of the same size.
    Arguments:
        hidden_size: total hidden size of the layer (h).
        num_attention_heads: number of attention heads (n). Note that we
                             require n to be divisible by number of GPUs
                             used to parallelize the model. Also, we
                             require hidden size be divisible by n.
        dropout_prob: dropout probability for the attention scores.
        output_parallel: If true, no all-gather is done on the output and
                         the output values will be per partition.
    We use the following notation:
        h: hidden_size
        n: num_attention_heads
        p: number of partitions
        np: n/p
        hp: h/p
        hn: h/n
        b: batch size
        s: sequence length
    """
    def __init__(self, hidden_size, num_attention_heads,
                 dropout_prob, output_parallel=False,
                 init_method=init.xavier_normal_):
        super(BertParallelSelfAttention, self).__init__()
        # Input configuration.
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.dropout_prob = dropout_prob
        self.output_parallel = output_parallel
        # Per attention head and per partition values.
        world_size = get_model_parallel_world_size()
        self.hidden_size_per_partition = divide(hidden_size, world_size)
        self.hidden_size_per_attention_head = divide(hidden_size,
                                                     num_attention_heads)
        self.num_attention_heads_per_partition = divide(num_attention_heads,
                                                        world_size)
        # Strided linear layer.
        self.query_key_value = ColumnParallelLinear(hidden_size, 3*hidden_size,
                                                    stride=3,
                                                    gather_output=False,
                                                    init_method=init_method)
        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.dropout = torch.nn.Dropout(dropout_prob)

    def _transpose_for_scores(self, tensor):
        """Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with
        size [b, np, s, hn].
        """
        new_tensor_shape = tensor.size()[:-1] + \
                           (self.num_attention_heads_per_partition,
                            self.hidden_size_per_attention_head)
        tensor = tensor.view(*new_tensor_shape)
        return tensor.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask):

        # Attention heads. [b, s, hp]
        mixed_x_layer = self.query_key_value(hidden_states)
        (mixed_query_layer,
         mixed_key_layer,
         mixed_value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)

        # Reshape and transpose [b, np, s, hn]
        query_layer = self._transpose_for_scores(mixed_query_layer)
        key_layer = self._transpose_for_scores(mixed_key_layer)
        value_layer = self._transpose_for_scores(mixed_value_layer)

        # Raw attention scores. [b, np, s, s]
Raul Puri's avatar
Raul Puri committed
511
512
513
        norm_factor = math.sqrt(math.sqrt(self.hidden_size_per_attention_head))
        attention_scores = torch.matmul(query_layer/norm_factor,
                                        key_layer.transpose(-1, -2)/norm_factor)
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        # Apply the attention mask.
        attention_scores += attention_mask

        # Attention probabilities. [b, np, s, s]
        attention_probs = torch.nn.Softmax(dim=-1)(attention_scores)
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        with get_cuda_rng_tracker().fork():
            attention_probs = self.dropout(attention_probs)

        # Context layer.
        # [b, np, s, hn]
        context_layer = torch.matmul(attention_probs, value_layer)
        # [b, s, np, hn]
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + \
                                  (self.hidden_size_per_partition,)
        # [b, s, hp]
        context_layer = context_layer.view(*new_context_layer_shape)

        # Output. [b, s, h]
        if self.output_parallel:
            output = context_layer
        else:
            output = gather_from_model_parallel_region(context_layer)

        return output


class BertParallelTransformerOutput(torch.nn.Module):
    """The output layer used after self attention and intermediate
    parts of transformer layer."""
    def __init__(self, input_size, output_size, dropout_prob,
                 layernorm_epsilon=1.0e-12, input_is_parallel=False,
                 init_method=init.xavier_normal_):
        super(BertParallelTransformerOutput, self).__init__()
        # Components.
        self.dense = RowParallelLinear(input_size,
                                       output_size,
                                       input_is_parallel=input_is_parallel,
                                       init_method=init_method)
        self.dropout = torch.nn.Dropout(dropout_prob)
        self.layernorm = LayerNorm(output_size, eps=layernorm_epsilon)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        layernorm_input = hidden_states + input_tensor
        hidden_states = self.layernorm(layernorm_input)
        return hidden_states


class BertParallelTransformerLayer(torch.nn.Module):
    """A single layer transformer for Bert.

    We use the following notation:
        h: hidden size
        n: number of attention heads
        b: batch size
        s: sequence length
    Transformore layer takes input with size [b, s, h] and returns an
    output of the same size.

    Arguments:
        hidden_size: The hidden size of the self attention.
        intermediate_size: size of the intermediate state after
                           self attention. In both BERT and GPT
                           this is set to be 4 times the hidden
                           size.
        num_attention_heads: number of attention head in the self
                             attention.
        attention_dropout_prob: dropout probability of the attention
                                score in self attention.
        output_dropout_prob: dropout probability for the outputs
                             after self attention and final output.
        intermediate_activation_fn: activation function for output
                                    of intermediate.
        layernorm_epsilon: epsilon used in layernorm to avoid
                           division by zero.
        init_method: initialization method used for the weights. Note
                     that all biases are initialized to zero and
                     layernorm weight are initialized to one.
    """
    def __init__(self,
                 hidden_size,
                 intermediate_size,
                 num_attention_heads,
                 attention_dropout_prob,
                 output_dropout_prob,
                 intermediate_activation_fn,
                 layernorm_epsilon,
                 init_method=init.xavier_normal_):
        super(BertParallelTransformerLayer, self).__init__()

        # Self attention.
        self.attention = BertParallelSelfAttention(hidden_size,
                                                   num_attention_heads,
                                                   attention_dropout_prob,
                                                   output_parallel=True,
                                                   init_method=init_method)
        # Self attention output.
        self.self_output = BertParallelTransformerOutput(
            hidden_size, hidden_size, output_dropout_prob,
            layernorm_epsilon=layernorm_epsilon,
            input_is_parallel=True,
            init_method=init_method)
        # Intermediate.
        self.intermediate = ColumnParallelLinear(hidden_size, intermediate_size,
                                                 gather_output=False,
                                                 init_method=init_method)
        self.intermediate_activation_fn = intermediate_activation_fn
        # Output.
        self.output = BertParallelTransformerOutput(
            intermediate_size, hidden_size, output_dropout_prob,
            layernorm_epsilon=layernorm_epsilon,
            input_is_parallel=True,
            init_method=init_method)

    def forward(self, hidden_states, attention_mask):
        # [b, s, hp]
        attention_output_parallel = self.attention(hidden_states,
                                                   attention_mask)
        # [b, s, h]
        attention_self_output = self.self_output(attention_output_parallel,
                                                 hidden_states)
        # [b, s, ip]
        intermediate_output_parallel = self.intermediate(attention_self_output)
        intermediate_output_parallel = self.intermediate_activation_fn(
            intermediate_output_parallel)
        # [b, s, h]
        layer_output = self.output(intermediate_output_parallel,
                                   attention_self_output)

        return layer_output