hashed_index.py 6.73 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
2
3
4
5
6
7
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

from megatron import get_args
from megatron import mpu
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.data.bert_dataset import get_indexed_dataset_
8
from megatron.data.realm_dataset import InverseClozeDataset
9
from megatron.data.realm_index import detach, BlockData, RandProjectionLSHIndex
Neel Kant's avatar
Neel Kant committed
10
11
from megatron.data.samplers import DistributedBatchSampler
from megatron.initialize import initialize_megatron
Neel Kant's avatar
Neel Kant committed
12
from megatron.model import REALMRetriever
Neel Kant's avatar
Neel Kant committed
13
14
15
16
from megatron.training import get_model
from pretrain_bert_ict import get_batch, model_provider


Neel Kant's avatar
Neel Kant committed
17
18
19
def test_retriever():
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
Neel Kant's avatar
Neel Kant committed
20
    args = get_args()
Neel Kant's avatar
Neel Kant committed
21
    model = load_ict_checkpoint(only_block_model=True)
Neel Kant's avatar
Neel Kant committed
22
    model.eval()
Neel Kant's avatar
Neel Kant committed
23
    dataset = get_ict_dataset()
Neel Kant's avatar
Neel Kant committed
24
    hashed_index = HashedIndex.load_from_file(args.hash_data_path)
Neel Kant's avatar
Neel Kant committed
25
    retriever = REALMRetriever(model, dataset, hashed_index)
Neel Kant's avatar
Neel Kant committed
26
27
28
29
30
31
32
33
34
35

    strs = [
        "The last monarch from the house of windsor",
        "married to Elvis Presley",
        "tallest building in the world today",
        "who makes graphics cards"
    ]

    for s in strs:
        retriever.retrieve_evidence_blocks_text(s)
Neel Kant's avatar
Neel Kant committed
36
37


Neel Kant's avatar
Neel Kant committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def main():

    # TODO
    # consider broadcasting/all-reducing all in memory rather than using the filesystem
    # create a different process group in the same nccl world - don't have to use chkpts on disc or transfer things on disc
    # torch distributed new group, constains a list of rank, gives back a group which I can hand to the collective operations
    # create a training process group, indexing process group
    # pass the training group to the distributed DDP, instead of the large world process group
    # use indexing process group for the shard-combining
    # communication group between process "8" and process "0" which tells training group that there's a new index
    # also, process 0 sends process 8 the new model

    # if i want to launch a separate process for indexing, may have to work with environment variables to
    # allocate the resources well. Have to subsequently assign the correct gpus to the indexing job
    # consider initializing everything in a single group and break off processes based on the ranks

Neel Kant's avatar
Neel Kant committed
54
55
56
    # for debugging purposes, make it so that the training process group checks every some number of intervals
    # and if it isn't ready, then wait so that it's consistent. Start with using the filesystem

Neel Kant's avatar
Neel Kant committed
57
58
59
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
    args = get_args()
Neel Kant's avatar
Neel Kant committed
60
    model = load_ict_checkpoint(only_block_model=True, no_grad=True)
Neel Kant's avatar
Neel Kant committed
61
    model.eval()
Neel Kant's avatar
Neel Kant committed
62
    dataset = get_ict_dataset()
Neel Kant's avatar
Neel Kant committed
63
    data_iter = iter(get_one_epoch_dataloader(dataset))
64
65
    all_block_data = BlockData()
    hashed_index = RandProjectionLSHIndex(embed_size=128, num_buckets=32, whiten=True)
Neel Kant's avatar
Neel Kant committed
66

Neel Kant's avatar
Neel Kant committed
67
68
    i = 1
    total = 0
Neel Kant's avatar
Neel Kant committed
69
    while True:
70
71
72
73
74
        with torch.no_grad():
            try:
                query_tokens, query_pad_mask, \
                block_tokens, block_pad_mask, block_index_data = get_batch(data_iter)
            except:
Neel Kant's avatar
Neel Kant committed
75
                break
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
            block_index_data = detach(block_index_data)
            block_indices = block_index_data[:, 3]
            block_meta = block_index_data[:, :3]

            block_logits = detach(model(None, None, block_tokens, block_pad_mask, only_block=True))
            all_block_data.add_block_data(block_indices, block_logits, block_meta)

            total += block_indices.size
            i += 1
            if i % 20 == 0:
                print('Batch {:10d} | Total {:10d}'.format(i, total), flush=True)
                if args.debug:
                    break

91
    all_block_data.save_shard(args.rank)
Neel Kant's avatar
Neel Kant committed
92
    torch.distributed.barrier()
93
94
    del model

Neel Kant's avatar
Neel Kant committed
95
    if args.rank == 0:
96
97
98
        all_block_data.consolidate_shards_and_save()
        hashed_index.hash_whitened_block_embeds(all_block_data)
        hashed_index.save_to_file()
Neel Kant's avatar
Neel Kant committed
99
    else:
100
        all_block_data.clear()
Neel Kant's avatar
Neel Kant committed
101
102


Neel Kant's avatar
Neel Kant committed
103
def load_ict_checkpoint(only_query_model=False, only_block_model=False, no_grad=False):
Neel Kant's avatar
Neel Kant committed
104
    args = get_args()
Neel Kant's avatar
Neel Kant committed
105
    model = get_model(lambda: model_provider(only_query_model, only_block_model))
Neel Kant's avatar
Neel Kant committed
106
107
108

    if isinstance(model, torchDDP):
        model = model.module
Neel Kant's avatar
Neel Kant committed
109
    tracker_filename = get_checkpoint_tracker_filename(args.ict_load)
Neel Kant's avatar
Neel Kant committed
110
111
112
113
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
Neel Kant's avatar
Neel Kant committed
114
    checkpoint_name = get_checkpoint_name(args.ict_load, iteration, False)
Neel Kant's avatar
Neel Kant committed
115
116
117
118
119
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
Neel Kant's avatar
Neel Kant committed
120
121
122
123
124
125
126
127
128
    if only_query_model:
        state_dict['model'].pop('context_model')
    if only_block_model:
        state_dict['model'].pop('question_model')
    if no_grad:
        with torch.no_grad():
            model.load_state_dict(state_dict['model'])
    else:
        model.load_state_dict(state_dict['model'])
Neel Kant's avatar
Neel Kant committed
129
130
131
132
133
134
135
136
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


Neel Kant's avatar
Neel Kant committed
137
def get_ict_dataset():
Neel Kant's avatar
Neel Kant committed
138
    args = get_args()
Neel Kant's avatar
Neel Kant committed
139
    block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
140
    titles_dataset = get_indexed_dataset_(args.titles_data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
141
142
143

    kwargs = dict(
        name='full',
Neel Kant's avatar
Neel Kant committed
144
145
        block_dataset=block_dataset,
        title_dataset=titles_dataset,
Neel Kant's avatar
Neel Kant committed
146
        data_prefix=args.data_path,
Neel Kant's avatar
Neel Kant committed
147
148
        num_epochs=1,
        max_num_samples=None,
Neel Kant's avatar
Neel Kant committed
149
150
151
152
153
154
155
156
        max_seq_length=288,  # doesn't matter
        short_seq_prob=0.0001,  # doesn't matter
        seed=1
    )
    dataset = InverseClozeDataset(**kwargs)
    return dataset


Neel Kant's avatar
Neel Kant committed
157
def get_one_epoch_dataloader(dataset):
Neel Kant's avatar
Neel Kant committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    global_batch_size = args.batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=True,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


if __name__ == "__main__":
Neel Kant's avatar
Neel Kant committed
179
    main()