initialize.py 22.2 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""Model and data parallel groups."""

import torch

from .utils import ensure_divisibility


24
# Intra-layer model parallel group that the current rank belongs to.
25
_TENSOR_MODEL_PARALLEL_GROUP = None
26
# Inter-layer model parallel group that the current rank belongs to.
27
28
_PIPELINE_MODEL_PARALLEL_GROUP = None
# Model parallel group (both intra- and pipeline) that the current rank belongs to.
29
_MODEL_PARALLEL_GROUP = None
30
31
# Embedding group.
_EMBEDDING_GROUP = None
Vijay Korthikanti's avatar
Vijay Korthikanti committed
32
# Position embedding group.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
33
_POSITION_EMBEDDING_GROUP = None
34
35
36
# Data parallel group that the current rank belongs to.
_DATA_PARALLEL_GROUP = None

37
38
_VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None
_VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
39
_PIPELINE_MODEL_PARALLEL_SPLIT_RANK = None
40

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
# These values enable us to change the mpu sizes on the fly.
42
43
44
45
_MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_TENSOR_MODEL_PARALLEL_RANK = None
_MPU_PIPELINE_MODEL_PARALLEL_RANK = None
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
46

47
48
49
# A list of ranks that have a copy of the embedding.
_EMBEDDING_GLOBAL_RANKS = None

Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
51
52
# A list of ranks that have a copy of the position embedding.
_POSITION_EMBEDDING_GLOBAL_RANKS = None

53
# A list of global ranks for each pipeline group to ease calculation of the source
54
# rank when broadcasting from the first or last pipeline stage.
55
_PIPELINE_GLOBAL_RANKS = None
56

57
58
59
60
61
62
# A list of global ranks for each data parallel group to ease calculation of the source
# rank when broadcasting weights from src to all other data parallel ranks
_DATA_PARALLEL_GLOBAL_RANKS = None



63
64
65
66
67
def is_unitialized():
    """Useful for code segments that may be accessed with or without mpu initialization"""
    return _DATA_PARALLEL_GROUP is None


68
def initialize_model_parallel(tensor_model_parallel_size_=1,
69
                              pipeline_model_parallel_size_=1,
70
71
                              virtual_pipeline_model_parallel_size_=None,
                              pipeline_model_parallel_split_rank_=None):
72
73
74
75
    """
    Initialize model data parallel groups.

    Arguments:
76
77
78
79
80
81
82
        tensor_model_parallel_size: number of GPUs used for tensor model parallelism.
        pipeline_model_parallel_size: number of GPUs used for pipeline model parallelism.
        virtual_pipeline_model_parallel_size: number of virtual stages (interleaved
                                              pipeline).
        pipeline_model_parallel_split_rank: for models with both encoder and decoder,
                                            rank in pipeline with split point.

83
84

    Let's say we have a total of 16 GPUs denoted by g0 ... g15 and we
85
86
87
    use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
    the model pipeline. The present function will
    create 8 tensor model-parallel groups, 4 pipeline model-parallel groups
88
89
90
    and 8 data-parallel groups as:
        8 data_parallel groups:
            [g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15]
91
        8 tensor model-parallel groups:
92
            [g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15]
93
        4 pipeline model-parallel groups:
94
            [g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15]
95
96
97
98
99
100
    Note that for efficiency, the caller should make sure adjacent ranks
    are on the same DGX box. For example if we are using 2 DGX-1 boxes
    with a total of 16 GPUs, rank 0 to 7 belong to the first box and
    ranks 8 to 15 belong to the second box.
    """
    if torch.distributed.get_rank() == 0:
101
102
103
104
        print('> initializing tensor model parallel with size {}'.format(
            tensor_model_parallel_size_))
        print('> initializing pipeline model parallel with size {}'.format(
            pipeline_model_parallel_size_))
105
106
107
    # Get world size and rank. Ensure some consistencies.
    assert torch.distributed.is_initialized()
    world_size = torch.distributed.get_world_size()
108
109
    tensor_model_parallel_size = min(tensor_model_parallel_size_, world_size)
    pipeline_model_parallel_size = min(pipeline_model_parallel_size_, world_size)
110
    ensure_divisibility(world_size,
111
112
113
                        tensor_model_parallel_size * pipeline_model_parallel_size)
    data_parallel_size = world_size // (tensor_model_parallel_size *
                                        pipeline_model_parallel_size)
114

115
116
    num_tensor_model_parallel_groups = world_size // tensor_model_parallel_size
    num_pipeline_model_parallel_groups = world_size // pipeline_model_parallel_size
117
118
    num_data_parallel_groups = world_size // data_parallel_size

119
120
121
122
123
124
    if virtual_pipeline_model_parallel_size_ is not None:
        global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
        global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
        _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = 0
        _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = virtual_pipeline_model_parallel_size_

125
126
127
128
    if pipeline_model_parallel_split_rank_ is not None:
        global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
        _PIPELINE_MODEL_PARALLEL_SPLIT_RANK = pipeline_model_parallel_split_rank_

129
130
    rank = torch.distributed.get_rank()

131
    # Build the data-parallel groups.
132
    global _DATA_PARALLEL_GROUP
133
    global _DATA_PARALLEL_GLOBAL_RANKS
134
135
    assert _DATA_PARALLEL_GROUP is None, \
        'data parallel group is already initialized'
136
    all_data_parallel_group_ranks = []
137
138
139
140
    for i in range(pipeline_model_parallel_size):
        start_rank = i * num_pipeline_model_parallel_groups
        end_rank = (i + 1) * num_pipeline_model_parallel_groups
        for j in range(tensor_model_parallel_size):
141
            ranks = range(start_rank + j, end_rank,
142
                          tensor_model_parallel_size)
143
144
145
146
            all_data_parallel_group_ranks.append(list(ranks))
            group = torch.distributed.new_group(ranks)
            if rank in ranks:
                _DATA_PARALLEL_GROUP = group
147
                _DATA_PARALLEL_GLOBAL_RANKS = ranks
148
149

    # Build the model-parallel groups.
150
151
152
    global _MODEL_PARALLEL_GROUP
    assert _MODEL_PARALLEL_GROUP is None, \
        'model parallel group is already initialized'
153
154
155
    for i in range(data_parallel_size):
        ranks = [data_parallel_group_ranks[i]
                 for data_parallel_group_ranks in all_data_parallel_group_ranks]
156
        group = torch.distributed.new_group(ranks)
157
        if rank in ranks:
158
159
            _MODEL_PARALLEL_GROUP = group

160
161
162
163
164
165
166
    # Build the tensor model-parallel groups.
    global _TENSOR_MODEL_PARALLEL_GROUP
    assert _TENSOR_MODEL_PARALLEL_GROUP is None, \
        'tensor model parallel group is already initialized'
    for i in range(num_tensor_model_parallel_groups):
        ranks = range(i * tensor_model_parallel_size,
                      (i + 1) * tensor_model_parallel_size)
167
168
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
169
            _TENSOR_MODEL_PARALLEL_GROUP = group
170

171
172
173
    # Build the pipeline model-parallel groups and embedding groups
    # (first and last rank in each pipeline model-parallel group).
    global _PIPELINE_MODEL_PARALLEL_GROUP
174
    global _PIPELINE_GLOBAL_RANKS
175
176
    assert _PIPELINE_MODEL_PARALLEL_GROUP is None, \
        'pipeline model parallel group is already initialized'
177
    global _EMBEDDING_GROUP
178
    global _EMBEDDING_GLOBAL_RANKS
179
180
    assert _EMBEDDING_GROUP is None, \
        'embedding group is already initialized'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
181
182
183
184
    global _POSITION_EMBEDDING_GROUP
    global _POSITION_EMBEDDING_GLOBAL_RANKS
    assert _POSITION_EMBEDDING_GROUP is None, \
        'position embedding group is already initialized'
185
    for i in range(num_pipeline_model_parallel_groups):
186
        ranks = range(i, world_size,
187
                      num_pipeline_model_parallel_groups)
188
189
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
190
            _PIPELINE_MODEL_PARALLEL_GROUP = group
191
            _PIPELINE_GLOBAL_RANKS = ranks
192
193
194
195
        # Setup embedding group (to exchange gradients between
        # first and last stages).
        if len(ranks) > 1:
            embedding_ranks = [ranks[0], ranks[-1]]
Vijay Korthikanti's avatar
Vijay Korthikanti committed
196
197
198
199
200
201
202
203
204
            position_embedding_ranks = [ranks[0]]
            if pipeline_model_parallel_split_rank_ is not None:
                if ranks[pipeline_model_parallel_split_rank_] not in embedding_ranks:
                    embedding_ranks = [ranks[0],
                                       ranks[pipeline_model_parallel_split_rank_],
                                       ranks[-1]]
                if ranks[pipeline_model_parallel_split_rank_] not in position_embedding_ranks:
                    position_embedding_ranks = [ranks[0],
                                       ranks[pipeline_model_parallel_split_rank_]]
205
206
        else:
            embedding_ranks = ranks
Vijay Korthikanti's avatar
Vijay Korthikanti committed
207
208
            position_embedding_ranks = ranks

209
210
211
        group = torch.distributed.new_group(embedding_ranks)
        if rank in embedding_ranks:
            _EMBEDDING_GROUP = group
212
213
        if rank in ranks:
            _EMBEDDING_GLOBAL_RANKS = embedding_ranks
214

Vijay Korthikanti's avatar
Vijay Korthikanti committed
215
216
217
218
        group = torch.distributed.new_group(position_embedding_ranks)
        if rank in position_embedding_ranks:
            _POSITION_EMBEDDING_GROUP = group
        if rank in ranks:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
219
            _POSITION_EMBEDDING_GLOBAL_RANKS = position_embedding_ranks
Vijay Korthikanti's avatar
Vijay Korthikanti committed
220

221
222
223

def model_parallel_is_initialized():
    """Check if model and data parallel groups are initialized."""
224
225
    if _TENSOR_MODEL_PARALLEL_GROUP is None or \
        _PIPELINE_MODEL_PARALLEL_GROUP is None or \
226
        _DATA_PARALLEL_GROUP is None:
227
228
229
230
231
232
233
234
235
236
237
        return False
    return True


def get_model_parallel_group():
    """Get the model parallel group the caller rank belongs to."""
    assert _MODEL_PARALLEL_GROUP is not None, \
        'model parallel group is not initialized'
    return _MODEL_PARALLEL_GROUP


238
239
240
def get_tensor_model_parallel_group():
    """Get the tensor model parallel group the caller rank belongs to."""
    assert _TENSOR_MODEL_PARALLEL_GROUP is not None, \
241
        'intra_layer_model parallel group is not initialized'
242
    return _TENSOR_MODEL_PARALLEL_GROUP
243
244


245
246
247
248
249
def get_pipeline_model_parallel_group():
    """Get the pipeline model parallel group the caller rank belongs to."""
    assert _PIPELINE_MODEL_PARALLEL_GROUP is not None, \
        'pipeline_model parallel group is not initialized'
    return _PIPELINE_MODEL_PARALLEL_GROUP
250
251


252
253
254
255
256
257
258
def get_data_parallel_group():
    """Get the data parallel group the caller rank belongs to."""
    assert _DATA_PARALLEL_GROUP is not None, \
        'data parallel group is not initialized'
    return _DATA_PARALLEL_GROUP


259
260
261
262
263
264
265
def get_embedding_group():
    """Get the embedding group the caller rank belongs to."""
    assert _EMBEDDING_GROUP is not None, \
        'embedding group is not initialized'
    return _EMBEDDING_GROUP


Vijay Korthikanti's avatar
Vijay Korthikanti committed
266
267
268
269
270
271
272
def get_position_embedding_group():
    """Get the position embedding group the caller rank belongs to."""
    assert _POSITION_EMBEDDING_GROUP is not None, \
        'position embedding group is not initialized'
    return _POSITION_EMBEDDING_GROUP


273
274
275
276
def set_tensor_model_parallel_world_size(world_size):
    """Set the tensor model parallel size"""
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = world_size
277
278


279
280
281
282
def set_pipeline_model_parallel_world_size(world_size):
    """Set the pipeline model parallel size"""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = world_size
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
283
284


285
286
287
288
289
290
def get_tensor_model_parallel_world_size():
    """Return world size for the tensor model parallel group."""
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_tensor_model_parallel_group())
291
292


293
294
295
296
297
298
def get_pipeline_model_parallel_world_size():
    """Return world size for the pipeline model parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_pipeline_model_parallel_group())
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
299
300


301
302
303
304
def set_tensor_model_parallel_rank(rank):
    """Set tensor model parallel rank."""
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    _MPU_TENSOR_MODEL_PARALLEL_RANK = rank
305
306


307
308
309
310
def set_pipeline_model_parallel_rank(rank):
    """Set pipeline model parallel rank."""
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    _MPU_PIPELINE_MODEL_PARALLEL_RANK = rank
311
312


313
314
315
316
317
318
def get_tensor_model_parallel_rank():
    """Return my rank for the tensor model parallel group."""
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    if _MPU_TENSOR_MODEL_PARALLEL_RANK is not None:
        return _MPU_TENSOR_MODEL_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_tensor_model_parallel_group())
319
320


321
322
323
324
325
326
def get_pipeline_model_parallel_rank():
    """Return my rank for the pipeline model parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    if _MPU_PIPELINE_MODEL_PARALLEL_RANK is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_pipeline_model_parallel_group())
327
328


329
330
331
332
333
def get_num_layers(args, is_encoder_and_decoder_model):
    """Compute the number of transformer layers resident on the current rank."""
    if get_pipeline_model_parallel_world_size() > 1:
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None
Lawrence McAfee's avatar
Lawrence McAfee committed
334
335
336
337
338

            # When a standalone embedding stage is used, a rank is taken from
            # the encoder's ranks, to be used for the encoder's embedding
            # layer. This way, the rank referenced by the 'split rank' remains
            # the same whether or not a standalone embedding stage is used.
339
340
            num_ranks_in_encoder = (
                args.pipeline_model_parallel_split_rank - 1
341
                if args.standalone_embedding_stage else
342
343
344
                args.pipeline_model_parallel_split_rank
            )
            num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder
345
            assert args.num_layers % num_ranks_in_encoder == 0, \
346
                    'num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.num_layers, num_ranks_in_encoder)
347
            assert args.num_layers % num_ranks_in_decoder == 0, \
348
                    'num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.num_layers, num_ranks_in_decoder)
Lawrence McAfee's avatar
Lawrence McAfee committed
349
            if is_pipeline_stage_before_split():
Lawrence McAfee's avatar
Lawrence McAfee committed
350
351
352
353
354
355
                num_layers = (
                    0
                    if args.standalone_embedding_stage
                    and get_pipeline_model_parallel_rank() == 0 else
                    args.num_layers // num_ranks_in_encoder
                )
356
357
358
            else:
                num_layers = args.num_layers // num_ranks_in_decoder
        else:
Lawrence McAfee's avatar
Lawrence McAfee committed
359
360
            assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
                'num_layers must be divisible by transformer_pipeline_model_parallel_size'
Lawrence McAfee's avatar
Lawrence McAfee committed
361
362
363
364
365

            # When a standalone embedding stage is used, all transformer layers
            # are divided among pipeline rank >= 1, while on pipeline rank 0,
            # ranks either contain the input embedding layer (virtual pp rank 0),
            # or no layers at all (virtual pp rank >= 1).
Lawrence McAfee's avatar
Lawrence McAfee committed
366
367
            num_layers = (
                0
368
                if args.standalone_embedding_stage
Lawrence McAfee's avatar
Lawrence McAfee committed
369
                and get_pipeline_model_parallel_rank() == 0 else
Lawrence McAfee's avatar
Lawrence McAfee committed
370
                args.num_layers // args.transformer_pipeline_model_parallel_size
Lawrence McAfee's avatar
Lawrence McAfee committed
371
            )
372
373
374
375
376
    else:
        num_layers = args.num_layers
    return num_layers


377
def is_pipeline_first_stage(ignore_virtual=False):
378
    """Return True if in the first pipeline model-parallel stage, False otherwise."""
379
    if not ignore_virtual:
380
381
        if get_virtual_pipeline_model_parallel_world_size() is not None and \
            get_virtual_pipeline_model_parallel_rank() != 0:
382
            return False
383
    return get_pipeline_model_parallel_rank() == 0
384
385


386
def is_pipeline_last_stage(ignore_virtual=False):
387
    """Return True if in the last pipeline model-parallel stage, False otherwise."""
388
    if not ignore_virtual:
389
390
391
392
393
        virtual_pipeline_model_parallel_world_size = \
            get_virtual_pipeline_model_parallel_world_size()
        if virtual_pipeline_model_parallel_world_size is not None and \
            get_virtual_pipeline_model_parallel_rank() != (
                virtual_pipeline_model_parallel_world_size - 1):
394
            return False
395
396
    return get_pipeline_model_parallel_rank() == (
        get_pipeline_model_parallel_world_size() - 1)
397
398


399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
def is_rank_in_embedding_group(ignore_virtual=False):
    """Return true if current rank is in embedding group, False otherwise."""
    rank = torch.distributed.get_rank()
    global _EMBEDDING_GLOBAL_RANKS
    if ignore_virtual:
        return rank in _EMBEDDING_GLOBAL_RANKS
    if rank in _EMBEDDING_GLOBAL_RANKS:
        if rank == _EMBEDDING_GLOBAL_RANKS[0]:
            return is_pipeline_first_stage(ignore_virtual=False)
        elif rank == _EMBEDDING_GLOBAL_RANKS[-1]:
            return is_pipeline_last_stage(ignore_virtual=False)
        else:
            return True
    return False


Vijay Korthikanti's avatar
Vijay Korthikanti committed
415
416
417
418
419
420
421
def is_rank_in_position_embedding_group():
    """Return true if current rank is in position embedding group, False otherwise."""
    rank = torch.distributed.get_rank()
    global _POSITION_EMBEDDING_GLOBAL_RANKS
    return rank in _POSITION_EMBEDDING_GLOBAL_RANKS


422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
def is_pipeline_stage_before_split(rank=None):
    """Return True if pipeline stage executes encoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
        return True
    if rank < _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
        return True
    return False


def is_pipeline_stage_after_split(rank=None):
    """Return True if pipeline stage executes decoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
        return True
    if rank >= _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
        return True
    return False


def is_pipeline_stage_at_split():
    """Return true if pipeline stage executes decoder block and next
    stage executes encoder block for a model with both encoder and
    decoder."""
    rank = get_pipeline_model_parallel_rank()
    return is_pipeline_stage_before_split(rank) and \
            is_pipeline_stage_after_split(rank+1)


461
462
463
464
465
466
467
468
469
470
471
472
def get_virtual_pipeline_model_parallel_rank():
    """Return the virtual pipeline-parallel rank."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    return _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK


def set_virtual_pipeline_model_parallel_rank(rank):
    """Set the virtual pipeline-parallel rank."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = rank


473
474
475
476
477
478
def get_virtual_pipeline_model_parallel_world_size():
    """Return the virtual pipeline-parallel world size."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    return _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE


479
def get_tensor_model_parallel_src_rank():
480
    """Calculate the global rank corresponding to the first local rank
481
    in the tensor model parallel group."""
482
    global_rank = torch.distributed.get_rank()
483
    local_world_size = get_tensor_model_parallel_world_size()
484
485
    return (global_rank // local_world_size) * local_world_size

486

487
488
def get_data_parallel_src_rank():
    """Calculate the global rank corresponding to the first local rank
489
490
491
492
    in the data parallel group."""
    assert _DATA_PARALLEL_GLOBAL_RANKS is not None, \
        "Data parallel group is not initialized"
    return _DATA_PARALLEL_GLOBAL_RANKS[0]
493
494


495
496
497
498
499
def get_pipeline_model_parallel_first_rank():
    assert _PIPELINE_GLOBAL_RANKS is not None, \
        "Pipeline parallel group is not initialized"
    return _PIPELINE_GLOBAL_RANKS[0]

500

501
502
503
504
505
def get_pipeline_model_parallel_last_rank():
    assert _PIPELINE_GLOBAL_RANKS is not None, \
        "Pipeline parallel group is not initialized"
    last_rank_local = get_pipeline_model_parallel_world_size() - 1
    return _PIPELINE_GLOBAL_RANKS[last_rank_local]
506

507
def get_pipeline_model_parallel_next_rank():
508
509
    assert _PIPELINE_GLOBAL_RANKS is not None, \
        "Pipeline parallel group is not initialized"
510
511
512
513
    rank_in_pipeline = get_pipeline_model_parallel_rank()
    world_size = get_pipeline_model_parallel_world_size()
    return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline + 1) % world_size]

514

515
516
517
518
519
520
def get_pipeline_model_parallel_prev_rank():
    assert _PIPELINE_GLOBAL_RANKS is not None, \
        "Pipeline parallel group is not initialized"
    rank_in_pipeline = get_pipeline_model_parallel_rank()
    world_size = get_pipeline_model_parallel_world_size()
    return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline - 1) % world_size]
521

522

523
524
525
526
527
528
529
530
531
532
533
534
def get_data_parallel_world_size():
    """Return world size for the data parallel group."""
    return torch.distributed.get_world_size(group=get_data_parallel_group())


def get_data_parallel_rank():
    """Return my rank for the data parallel group."""
    return torch.distributed.get_rank(group=get_data_parallel_group())


def destroy_model_parallel():
    """Set the groups to none."""
535
536
    global _MODEL_PARALLEL_GROUP
    _MODEL_PARALLEL_GROUP = None
537
538
539
540
    global _TENSOR_MODEL_PARALLEL_GROUP
    _TENSOR_MODEL_PARALLEL_GROUP = None
    global _PIPELINE_MODEL_PARALLEL_GROUP
    _PIPELINE_MODEL_PARALLEL_GROUP = None
541
542
    global _DATA_PARALLEL_GROUP
    _DATA_PARALLEL_GROUP = None
543
544
    global _EMBEDDING_GROUP
    _EMBEDDING_GROUP = None
Vijay Korthikanti's avatar
Vijay Korthikanti committed
545
546
    global _POSITION_EMBEDDING_GROUP
    _POSITION_EMBEDDING_GROUP = None