test_retro_attention.py 7.63 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

import os
import types

import pytest
import torch

from megatron.core.models.retro import RetroConfig, get_retro_decoder_block_spec
from megatron.core.models.retro.decoder_attention import (
    RetroDecoderBiasDropoutAdd,
    RetroDecoderCrossAttention,
)
from megatron.core.models.retro.encoder_attention import (
    RetroEncoderBiasDropoutAdd,
    RetroEncoderCrossAttention,
    RetroEncoderLayerNorm,
)
from megatron.core.tensor_parallel.random import model_parallel_cuda_manual_seed
from megatron.core.transformer.transformer_block import TransformerBlock
from tests.unit_tests.test_utilities import Utils


class TestRetroAttention:

    @classmethod
    def get_config(cls):
        return RetroConfig(
            num_layers=12,
            hidden_size=16,
            num_attention_heads=4,
            use_cpu_initialization=True,
            retro_num_neighbors=2,
            retro_chunk_length=4,
            retro_retrieved_length=8,
            retro_split_preprocessing="98,2,0",
        )

    @classmethod
    def get_modules(cls, config, use_transformer_engine, use_gpu):

        # Retro decoder layer.
        decoder_block_spec = get_retro_decoder_block_spec(
            config, use_transformer_engine=use_transformer_engine
        )
        decoder_block = TransformerBlock(config=config, spec=decoder_block_spec)
        decoder_layers = [
            layer
            for layer in decoder_block.layers
            if isinstance(layer.cross_attention, RetroDecoderCrossAttention)
        ]
        decoder_layer = decoder_layers[0]

        # Retro encoder layer.
        encoder_block = decoder_layer.cross_attention.encoder
        encoder_layers = [
            layer
            for layer in encoder_block.layers
            if isinstance(layer.cross_attention, RetroEncoderCrossAttention)
        ]
        encoder_layer = encoder_layers[0]

        # Modules.
        modules = types.SimpleNamespace(
            decoder_attn=decoder_layer.cross_attention,
            decoder_bda=decoder_layer.cross_attn_bda,
            encoder_attn=encoder_layer.cross_attention,
            encoder_bda=encoder_layer.cross_attn_bda,
            encoder_norm=encoder_layer.pre_mlp_layernorm,
        )

        # GPU.
        if use_gpu:
            [m.cuda() for m in vars(modules).values()]

        return modules

    def setup_method(self, method):
        Utils.initialize_model_parallel(1, 1)
        os.environ['NVTE_FLASH_ATTN'] = "0"
        os.environ['NVTE_FUSED_ATTN'] = "0"

        model_parallel_cuda_manual_seed(123)

    def teardown_method(self, method):
        Utils.destroy_model_parallel()

    def test_constructor(self):

        config = self.get_config()
        modules = self.get_modules(config, use_transformer_engine=True, use_gpu=False)

        assert isinstance(modules.decoder_attn, RetroDecoderCrossAttention)
        assert isinstance(modules.decoder_bda, RetroDecoderBiasDropoutAdd)
        assert isinstance(modules.encoder_attn, RetroEncoderCrossAttention)
        assert isinstance(modules.encoder_bda, RetroEncoderBiasDropoutAdd)
        assert isinstance(modules.encoder_norm, RetroEncoderLayerNorm)

        assert modules.decoder_attn.attn.layer_number == 6
        assert modules.encoder_attn.attn.layer_number == 1

        get_nparams = lambda m: sum(p.numel() for p in m.parameters())
        assert get_nparams(modules.decoder_attn) == 8768
        assert get_nparams(modules.decoder_bda) == 0
        assert get_nparams(modules.encoder_attn) == 1088
        assert get_nparams(modules.encoder_bda) == 0
        assert get_nparams(modules.encoder_norm) == 32

    def test_cpu_forward(self):
        # we can't currently do this because the global memory buffer is on GPU
        pass

    def run_gpu_forward(self, recompute_granularity, use_transformer_engine):

        config = self.get_config()
        config.recompute_granularity = recompute_granularity
        modules = self.get_modules(config, use_transformer_engine, use_gpu=True)

        seq_length = 32
        micro_batch_size = 2
        n_chunks_per_sample = seq_length // config.retro_chunk_length

        # Init tensors.
        hidden_states = torch.ones((seq_length, micro_batch_size, config.hidden_size)).cuda()
        attention_mask = None
        decoder_context = torch.ones(
            (
                config.retro_retrieved_length,
                config.retro_num_neighbors * micro_batch_size * n_chunks_per_sample,
                config.hidden_size,
            )
        ).cuda()
        encoder_context = torch.ones(
            (config.retro_chunk_length, micro_batch_size * n_chunks_per_sample, config.hidden_size)
        ).cuda()

        # Forward decoder.
        decoder_attn_output = modules.decoder_attn(hidden_states, attention_mask, decoder_context)
        with torch.enable_grad():
            decoder_bda_output = modules.decoder_bda(True, True)(
                decoder_attn_output, hidden_states, config.hidden_dropout
            )

        # Forward encoder.
        encoder_attn_output_tuples = modules.encoder_attn(decoder_context, None, encoder_context)
        with torch.enable_grad():
            encoder_bda_output = modules.encoder_bda(True, True)(
                encoder_attn_output_tuples, decoder_context, config.retro_encoder_hidden_dropout
            )
        encoder_norm_output = modules.encoder_norm(encoder_bda_output)

        # Verify decoder.
        assert set(decoder_attn_output.keys()) == set(
            ["ns", "bs", "d", "l", "pad", "attention_output", "attention_bias", "context"]
        )
        assert decoder_attn_output["ns"] == seq_length
        assert decoder_attn_output["bs"] == micro_batch_size
        assert decoder_attn_output["d"] == config.hidden_size
        assert decoder_attn_output["l"] == n_chunks_per_sample
        assert decoder_attn_output["pad"] == 3
        assert tuple(decoder_attn_output["attention_output"].shape) == (
            config.retro_chunk_length,
            micro_batch_size * n_chunks_per_sample,
            config.hidden_size,
        )
        assert tuple(decoder_attn_output["attention_bias"].shape) == (config.hidden_size,)
        assert decoder_attn_output["context"].shape == (
            config.retro_retrieved_length * config.retro_num_neighbors,
            micro_batch_size * n_chunks_per_sample,
            config.hidden_size,
        )
        assert decoder_bda_output.shape == hidden_states.shape

        # Verify encoder.
        assert len(encoder_attn_output_tuples) == config.retro_num_neighbors
        for output, bias, residual in encoder_attn_output_tuples:
            assert tuple(output.shape) == (
                config.retro_retrieved_length,
                micro_batch_size * n_chunks_per_sample,
                config.hidden_size,
            )
            assert tuple(bias.shape) == (config.hidden_size,)
            assert tuple(residual.shape) == (
                config.retro_retrieved_length,
                micro_batch_size * n_chunks_per_sample,
                config.hidden_size,
            )
        assert encoder_bda_output.shape == (
            config.retro_retrieved_length,
            config.retro_num_neighbors * micro_batch_size * n_chunks_per_sample,
            config.hidden_size,
        )
        assert encoder_norm_output.shape == (
            config.retro_retrieved_length,
            config.retro_num_neighbors * micro_batch_size * n_chunks_per_sample,
            config.hidden_size,
        )

    def test_gpu_forward(self):
        for recompute_granularity in (None, 'selective'):
            for use_transformer_engine in (True, False):
                self.run_gpu_forward(recompute_granularity, use_transformer_engine)