test_mamba_layer.py 1.84 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.

import pytest
import torch

from megatron.core.models.mamba.mamba_layer_specs import mamba_stack_spec
from megatron.core.ssm.mamba_layer import MambaLayer
from megatron.core.tensor_parallel.random import model_parallel_cuda_manual_seed
from megatron.core.transformer.transformer_config import TransformerConfig
from tests.unit_tests.test_utilities import Utils


class TestMambaLayer:

    def setup_method(self, method):
        Utils.initialize_model_parallel(1, 1)
        model_parallel_cuda_manual_seed(123)
        transformer_config = TransformerConfig(
            hidden_size=256,  # The Mamba layer places several constraints on this
            # Need to specify num_attention_heads and num_layers or TransformerConfig
            # will generate errors.
            num_layers=1,
            num_attention_heads=1,
            use_cpu_initialization=True,
        )
        modules = mamba_stack_spec.submodules.mamba_layer.submodules
        self.layer = MambaLayer(transformer_config, modules)

    def teardown_method(self, method):
        Utils.destroy_model_parallel()

    def test_gpu_forward(self):
        layer = self.layer
        layer.cuda()
        micro_batch_size = 2
        sequence_length = 32
        hidden_states = torch.ones((sequence_length, micro_batch_size, layer.config.hidden_size))
        hidden_states = hidden_states.cuda()
        attention_mask = torch.ones(
            (micro_batch_size, 1, sequence_length, sequence_length), dtype=bool
        )
        attention_mask = attention_mask.cuda()
        output = layer(hidden_states, attention_mask=attention_mask)
        assert output.shape[0] == sequence_length
        assert output.shape[1] == micro_batch_size
        assert output.shape[2] == layer.config.hidden_size
        assert output.dtype == torch.float32