pretrain_gpt2.py 22.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain GPT2"""

from datetime import datetime
import os
import random
import math
import numpy as np
import torch

from arguments import get_args
from configure_data import configure_data
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
27
28
29
30
31
32
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
from megatron.learning_rates import AnnealingLR
from megatron.model import GPT2Model
from megatron.model import gpt2_get_params_for_weight_decay_optimization
from megatron import mpu
33
from apex.optimizers import FusedAdam as Adam
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
34
35
36
37
38
39
40
41
42
from megatron.utils import Timers
from megatron.utils import save_checkpoint
from megatron.utils import load_checkpoint
from megatron.utils import report_memory
from megatron.utils import print_args
from megatron.utils import print_params_min_max_norm
from megatron.utils import print_rank_0
from megatron.utils import enable_adlr_autoresume
from megatron.utils import check_adlr_autoresume_termination
43
44
45
from megatron.utils import initialize_distributed
from megatron.utils import set_random_seed
from megatron.utils import wrap_model_for_distributed_training
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

from gpt2_data_loader import make_gpt2_dataloaders

def get_model(args):
    """Build the model."""

    print_rank_0('building GPT2 model ...')
    model = GPT2Model(num_layers=args.num_layers,
                      vocab_size=args.vocab_size,
                      hidden_size=args.hidden_size,
                      num_attention_heads=args.num_attention_heads,
                      embedding_dropout_prob=args.hidden_dropout,
                      attention_dropout_prob=args.attention_dropout,
                      output_dropout_prob=args.hidden_dropout,
                      max_sequence_length=args.max_position_embeddings,
                      checkpoint_activations=args.checkpoint_activations,
                      checkpoint_num_layers=args.checkpoint_num_layers,
                      parallel_output=True)

    if mpu.get_data_parallel_rank() == 0:
        print(' > number of parameters on model parallel rank {}: {}'.format(
            mpu.get_model_parallel_rank(),
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    # Wrap model for distributed training.
78
    model = wrap_model_for_distributed_training(model, args)
79
80
81
82
83
84
85
86

    return model


def get_optimizer(model, args):
    """Set up the optimizer."""

    # Build parameter groups (weight decay and non-decay).
87
    while isinstance(model, (args.DDP_type, FP16_Module)):
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        model = model.module
    param_groups = gpt2_get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
            if not hasattr(param, 'model_parallel'):
                param.model_parallel = False

    # Use Adam.
    optimizer = Adam(param_groups,
                     lr=args.lr, weight_decay=args.weight_decay)

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
                                       'min_scale':args.min_scale,
                                       'delayed_shift': args.hysteresis})

    return optimizer


def get_learning_rate_scheduler(optimizer, args):
    """Build the learning rate scheduler."""

    # Add linear learning rate scheduler.
    if args.lr_decay_iters is not None:
        num_iters = args.lr_decay_iters
    else:
        num_iters = args.train_iters
    num_iters = max(1, num_iters)
    init_step = -1
    warmup_iter = args.warmup * num_iters
    lr_scheduler = AnnealingLR(optimizer,
                               start_lr=args.lr,
                               warmup_iter=warmup_iter,
                               num_iters=num_iters,
                               decay_style=args.lr_decay_style,
130
131
132
133
                               last_iter=init_step,
                               min_lr=args.min_lr,
                               use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
                               override_lr_scheduler=args.override_lr_scheduler)
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

    return lr_scheduler


def setup_model_and_optimizer(args):
    """Setup model and optimizer."""

    model = get_model(args)
    optimizer = get_optimizer(model, args)
    lr_scheduler = get_learning_rate_scheduler(optimizer, args)

    if args.load is not None:
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler, args)
    else:
        args.iteration = 0

    return model, optimizer, lr_scheduler


def get_masks_and_position_ids(data,
                               eod_token,
                               reset_position_ids,
156
157
                               reset_attention_mask,
                               eod_mask_loss):
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

    # Extract batch size and sequence length.
    batch_size, seq_length = data.size()

    # Attention mask (lower triangular).
    if reset_attention_mask:
        att_mask_batch = batch_size
    else:
        att_mask_batch = 1
    attention_mask = torch.tril(torch.ones(
        (att_mask_batch, seq_length, seq_length), device=data.device)).view(
            att_mask_batch, 1, seq_length, seq_length)

    # Loss mask.
    loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
173
174
    if eod_mask_loss:
        loss_mask[data == eod_token] = 0.0
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

    # Position ids.
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=data.device)
    position_ids = position_ids.unsqueeze(0).expand_as(data)
    # We need to clone as the ids will be modifed based on batch index.
    if reset_position_ids:
        position_ids = position_ids.clone()

    if reset_position_ids or reset_attention_mask:
        # Loop through the batches:
        for b in range(batch_size):

            # Find indecies where EOD token is.
            eod_index = position_ids[b, data[b] == eod_token]
            # Detach indecies from positions if going to modify positions.
            if reset_position_ids:
                eod_index = eod_index.clone()

            # Loop through EOD indecies:
            prev_index = 0
            for j in range(eod_index.size()[0]):
                i = eod_index[j]
                # Mask attention loss.
                if reset_attention_mask:
                    attention_mask[b, 0, (i+1):, :(i+1)] = 0
                # Reset positions.
                if reset_position_ids:
                    position_ids[b, (i+1):] -= (i + 1 - prev_index)
                    prev_index = i + 1

    return attention_mask, loss_mask, position_ids


def get_batch(data_iterator, args, timers):
    ''' get_batch subdivides the source data into chunks of
    length args.seq_length. If source is equal to the example
    output of the data loading example, with a seq_length limit
    of 2, we'd get the following two Variables for i = 0:
    ┌ a g m s ┐ ┌ b h n t ┐
    └ b h n t ┘ └ c i o u ┘
    Note that despite the name of the function, the subdivison of data is not
    done along the batch dimension (i.e. dimension 1), since that was handled
    by the data loader. The chunks are along dimension 0, corresponding
    to the seq_len dimension in the LSTM. A Variable representing an appropriate
    shard reset mask of the same dimensions is also returned.
    '''
    # Items and their type.
    keys = ['text']
    datatype = torch.int64

    # Broadcast data.
    timers('data loader').start()
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    timers('data loader').stop()
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens_ = data_b['text'].long()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    # Get the masks and postition ids.
    attention_mask, loss_mask, position_ids = get_masks_and_position_ids(
        tokens,
        args.eod_token,
        args.reset_position_ids,
245
246
        args.reset_attention_mask,
        args.eod_mask_loss)
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    # Convert
    if args.fp16:
        attention_mask = attention_mask.half()

    return tokens, labels, loss_mask, attention_mask, position_ids


def forward_step(data_iterator, model, args, timers):
    """Forward step."""

    # Get the batch.
    timers('batch generator').start()
    tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
        data_iterator, args, timers)
    timers('batch generator').stop()

    # Forward model.
    output = model(tokens, position_ids, attention_mask)
    losses = mpu.vocab_parallel_cross_entropy(output.contiguous().float(),
                                              labels)
    loss_mask = loss_mask.view(-1)
    loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()

    return loss


def backward_step(optimizer, model, lm_loss, args, timers):
    """Backward step."""

    # Total loss.
    loss = lm_loss

    # Backward pass.
    optimizer.zero_grad()
    if args.fp16:
        optimizer.backward(loss, update_master_grads=False)
    else:
        loss.backward()

    # Reduce across processes.
    lm_loss_reduced = lm_loss

    reduced_losses = lm_loss.view(1)
    torch.distributed.all_reduce(reduced_losses.data)
    reduced_losses.data = reduced_losses.data / args.world_size
292
    if args.DDP_impl == 'local':
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        timers('allreduce').start()
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
        timers('allreduce').stop()
    lm_loss_reduced = reduced_losses

    # Update master gradients.
    if args.fp16:
        optimizer.update_master_grads()

    # Clipping gradients helps prevent the exploding gradient.
    if args.clip_grad > 0:
        if not args.fp16:
            mpu.clip_grad_norm(model.parameters(), args.clip_grad)
        else:
            optimizer.clip_master_grads(args.clip_grad)

    return lm_loss_reduced


def train_step(data_iterator, model, optimizer, lr_scheduler,
               args, timers):
    """Single training step."""

    # Forward model for one step.
    timers('forward').start()
    lm_loss = forward_step(data_iterator, model, args, timers)
    timers('forward').stop()

    # Calculate gradients, reduce across processes, and clip.
    timers('backward').start()
    lm_loss_reduced = backward_step(optimizer, model, lm_loss, args, timers)
    timers('backward').stop()

    # Update parameters.
    timers('optimizer').start()
    optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
        lr_scheduler.step()
    else:
        skipped_iter = 1

    return lm_loss_reduced, skipped_iter


def train(model, optimizer, lr_scheduler,
343
          train_data_iterator, val_data_iterator, timers, args, writer):
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    """Train the model."""

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_lm_loss = 0.0

    # Iterations.
    iteration = args.iteration
    skipped_iters = 0

    timers('interval time').start()
    report_memory_flag = True
    while iteration < args.train_iters:

        lm_loss, skipped_iter = train_step(train_data_iterator,
                                           model,
                                           optimizer,
                                           lr_scheduler,
                                           args, timers)
        skipped_iters += skipped_iter
        iteration += 1

        # Update losses.
369
370
        current_lm_loss = lm_loss.data.detach().float()
        total_lm_loss += current_lm_loss
371
372

        # Logging.
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

        if args.DDP_impl == 'torch':
            timers_to_log = ['forward', 'backward', 'optimizer',
                            'batch generator', 'data loader']
        else:
            timers_to_log = ['forward', 'backward', 'allreduce', 'optimizer',
                             'batch generator', 'data loader']

        learning_rate = optimizer.param_groups[0]['lr']

        if writer and args.rank == 0:
            writer.add_scalar('learning_rate', learning_rate, iteration)
            writer.add_scalar('train_loss', current_lm_loss, iteration)
            if args.fp16:
                writer.add_scalar('loss_scale', optimizer.loss_scale, iteration)
            normalizer = iteration % args.log_interval
            if normalizer == 0:
                normalizer = args.log_interval
            timers.write(timers_to_log, writer, iteration,
                         normalizer=normalizer)

394
395
396
        if iteration % args.log_interval == 0:
            avg_lm_loss = total_lm_loss.item() / args.log_interval
            elapsed_time = timers('interval time').elapsed()
397
398
399
            if writer and args.rank == 0:
                writer.add_scalar('iteration_time',
                                  elapsed_time / args.log_interval, iteration)
400
401
402
403
404
405
406
407
408
409
410
411
412
413
            log_string = ' iteration {:8d}/{:8d} |'.format(iteration,
                                                            args.train_iters)
            log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
                elapsed_time * 1000.0 / args.log_interval)
            log_string += ' learning rate {:.3E} |'.format(learning_rate)
            log_string += ' lm loss {:.6E} |'.format(avg_lm_loss)
            if args.fp16:
                log_string += ' loss scale {:.1f} |'.format(
                    optimizer.loss_scale)
            print_rank_0(log_string)
            total_lm_loss = 0.0
            if report_memory_flag:
                report_memory('after {} iterations'.format(iteration))
                report_memory_flag = False
414
415
416
417
418
419
420
            timers.log(timers_to_log, normalizer=args.log_interval)

        # Autoresume
        if (iteration % args.adlr_autoresume_interval == 0) and args.adlr_autoresume:
            check_adlr_autoresume_termination(iteration, model, optimizer,
                                              lr_scheduler, args)

421
422
423
424
425
426
427
        # Checkpointing
        if args.save and args.save_interval and iteration % args.save_interval == 0:
            save_checkpoint(iteration, model, optimizer, lr_scheduler, args)

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and args.do_valid:
            prefix = 'iteration {}'.format(iteration)
428
429
            evaluate_and_print_results(prefix, val_data_iterator, model, args,
                                       writer, iteration, timers, False)
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

        if args.exit_interval and iteration % args.exit_interval == 0:
            torch.distributed.barrier()
            time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            rank = torch.distributed.get_rank()
            print('rank: {} | time: {} | exiting the program at iteration {}'.
                  format(rank, time_str, iteration), flush=True)
            exit()

    return iteration, skipped_iters


def evaluate(data_iterator, model, args, timers, verbose=False):
    """Evaluation."""

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_lm_loss = 0

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration, args.eval_iters))
            # Forward evaluation.
            lm_loss = forward_step(data_iterator, model, args, timers)
            # Reduce across processes.
459
            if isinstance(model, args.DDP_type):
460
461
462
463
464
465
466
467
468
469
470
471
472
                torch.distributed.all_reduce(lm_loss.data)
                lm_loss.data = lm_loss.data / args.world_size

            total_lm_loss += lm_loss.data.detach().float().item()

    # Move model back to the train mode.
    model.train()

    total_lm_loss /= args.eval_iters
    return total_lm_loss


def evaluate_and_print_results(prefix, data_iterator, model,
473
474
                               args, writer, iteration,
                               timers, verbose=False):
475
476
477
478
479
480
481
482
483
484
485
486
    """Helper function to evaluate and dump results on screen."""
    lm_loss = evaluate(data_iterator, model, args, timers, verbose)
    lm_ppl = math.exp(min(20, lm_loss))
    print_rank_0('-' * 100)
    string = ' validation loss at {} | '.format(prefix)
    string += 'LM loss: {:.6E} | '.format(lm_loss)
    string += 'LM PPL: {:.6E}'.format(lm_ppl)
    length = len(string) + 1
    print_rank_0('-' * length)
    print_rank_0(string)
    print_rank_0('-' * length)

487
488
489
490
    if writer and args.rank == 0:
        writer.add_scalar('val_loss', lm_loss, iteration)
        writer.add_scalar('val_ppl', lm_ppl, iteration)

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    return lm_loss


def get_train_val_test_data(args):
    """Load the data on rank zero and boradcast number of tokens to all GPUS."""

    (train_data, val_data, test_data) = (None, None, None)

    # Data loader only on rank 0 of each model parallel group.
    if mpu.get_model_parallel_rank() == 0:
        if args.use_npy_data_loader:
            (train_data, val_data, test_data), num_tokens, \
                eod_token = make_gpt2_dataloaders(args)
        else:
            data_config = configure_data()
            data_config.set_defaults(data_set_type='GPT2', transpose=False)
            (train_data, val_data, test_data), tokenizer = data_config.apply(
                args)
            num_tokens = tokenizer.num_tokens
            eod_token = tokenizer.get_command('eos').Id
            assert eod_token == tokenizer.get_command('pad').Id
        before = num_tokens
        after = before
        multiple = args.make_vocab_size_divisible_by * \
                   mpu.get_model_parallel_world_size()
        while (after % multiple) != 0:
            after += 1
        print_rank_0('> padded vocab (size: {}) with {} dummy '
                     'tokens (new size: {})'.format(
                         before, after - before, after))
        print_rank_0('> found end-of-document token: {}'.format(eod_token))
        token_counts = torch.cuda.LongTensor([after, eod_token, int(args.do_train), int(args.do_valid), int(args.do_test)])
    else:
        token_counts = torch.cuda.LongTensor([0, 0, 0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(token_counts,
                                mpu.get_model_parallel_src_rank(),
                                group=mpu.get_model_parallel_group())
    num_tokens = token_counts[0].item()
    eod_token = token_counts[1].item()
    args.do_train = token_counts[2].item()
    args.do_valid = token_counts[3].item()
    args.do_test = token_counts[4].item()

    return train_data, val_data, test_data, num_tokens, eod_token


def main():
    """Main training program."""

    # Disable CuDNN.
    torch.backends.cudnn.enabled = False

    # Timer.
    timers = Timers()

    # Arguments.
    args = get_args()

551
552
553
554
555
556
557
558
559
560
561
    writer = None
    if args.tensorboard_dir and args.rank == 0:
        try:
            from torch.utils.tensorboard import SummaryWriter
            writer = SummaryWriter(log_dir = args.tensorboard_dir)
        except ModuleNotFoundError:
            print_rank_0('WARNING: TensorBoard writing requested but is not '
                         'available (are you using PyTorch 1.1.0 or later?), '
                         'no TensorBoard logs will be written.')
            writer = None

562
563
564
565
    # Pytorch distributed.
    initialize_distributed(args)
    if torch.distributed.get_rank() == 0:
        print('Pretrain GPT2 model')
566
567
568
569
570
571
        print_args(args, writer)

    # Autoresume.
    torch.distributed.barrier()
    if args.adlr_autoresume:
        enable_adlr_autoresume(args)
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

    # Random seeds for reproducability.
    set_random_seed(args.seed)

    # Data stuff.
    train_data, val_data, test_data, args.vocab_size, \
        args.eod_token = get_train_val_test_data(args)

    # Model, optimizer, and learning rate.
    model, optimizer, lr_scheduler = setup_model_and_optimizer(args)

    # Resume data loader if necessary.
    if args.resume_dataloader:
        if train_data is not None:
            train_data.batch_sampler.start_iter = args.iteration % \
                                                  len(train_data)
588
589
            print_rank_0('setting training data start iteration to {}'.
                         format(train_data.batch_sampler.start_iter))
590
        if val_data is not None:
591
592
            start_iter_val = (args.iteration // args.eval_interval) * \
                             args.eval_iters
593
594
            val_data.batch_sampler.start_iter = start_iter_val % \
                                                len(val_data)
595
596
            print_rank_0('setting validation data start iteration to {}'.
                         format(val_data.batch_sampler.start_iter))
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
    if train_data is not None:
        train_data_iterator = iter(train_data)
    else:
        train_data_iterator = None
    if val_data is not None:
        val_data_iterator = iter(val_data)
    else:
        val_data_iterator = None

    #TODO: figure out how to properly set this especially when resuming training
    iteration = 0
    if args.train_iters > 0:
        if args.do_train:
            iteration, skipped = train(model, optimizer,
                                       lr_scheduler,
                                       train_data_iterator,
                                       val_data_iterator,
614
                                       timers, args, writer)
615
616
617
618

        if args.do_valid:
            prefix = 'the end of training for val data'
            val_loss = evaluate_and_print_results(prefix, val_data_iterator,
619
620
                                                  model, args, writer, iteration,
                                                  timers, False)
621
622
623
624
625
626
627
628
629
630
631
632
633
634

    if args.save and iteration != 0:
        save_checkpoint(iteration, model, optimizer,
                        lr_scheduler, args)

    if test_data is not None:
        test_data_iterator = iter(test_data)
    else:
        test_data_iterator = None

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, test_data_iterator,
635
                                   model, args, None, 0, timers, True)
636
637
638
639


if __name__ == "__main__":
    main()