pretrain_bert.py 22.3 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain BERT"""

18
from datetime import datetime
Raul Puri's avatar
Raul Puri committed
19
20
21
22
import os
import random
import numpy as np
import torch
23
import torch.nn.functional as F
Raul Puri's avatar
Raul Puri committed
24
25
26

from arguments import get_args
from configure_data import configure_data
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
27
28
29
30
31
32
33
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
from megatron.learning_rates import AnnealingLR
from megatron.model import BertModel
from megatron.model import get_params_for_weight_decay_optimization
from megatron.model import gpt2_get_params_for_weight_decay_optimization
from megatron import mpu
34
from apex.optimizers import FusedAdam as Adam
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
35
36
37
38
39
40
41
42
43
from megatron.utils import Timers
from megatron.utils import save_checkpoint
from megatron.utils import load_checkpoint
from megatron.utils import report_memory
from megatron.utils import print_args
from megatron.utils import print_params_min_max_norm
from megatron.utils import print_rank_0
from megatron.utils import enable_adlr_autoresume
from megatron.utils import check_adlr_autoresume_termination
44
45
46
47
from megatron.utils import initialize_distributed
from megatron.utils import set_random_seed
from megatron.utils import wrap_model_for_distributed_training

Raul Puri's avatar
Raul Puri committed
48

49
def get_model(args):
Raul Puri's avatar
Raul Puri committed
50
51
    """Build the model."""

52
53
54
55
56
57
58
    print_rank_0('building BERT model ...')
    model = BertModel(args)

    if mpu.get_data_parallel_rank() == 0:
        print(' > number of parameters on model parallel rank {}: {}'.format(
            mpu.get_model_parallel_rank(),
            sum([p.nelement() for p in model.parameters()])), flush=True)
Raul Puri's avatar
Raul Puri committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)
        if args.fp32_embedding:
            model.module.model.bert.embeddings.word_embeddings.float()
            model.module.model.bert.embeddings.position_embeddings.float()
            model.module.model.bert.embeddings.token_type_embeddings.float()
        if args.fp32_tokentypes:
            model.module.model.bert.embeddings.token_type_embeddings.float()
        if args.fp32_layernorm:
            for name, _module in model.named_modules():
                if 'LayerNorm' in name:
                    _module.float()

    # Wrap model for distributed training.
78
    model = wrap_model_for_distributed_training(model, args)
Raul Puri's avatar
Raul Puri committed
79
80
81
82
83
84
85
86

    return model


def get_optimizer(model, args):
    """Set up the optimizer."""

    # Build parameter groups (weight decay and non-decay).
87
    while isinstance(model, (args.DDP_type, FP16_Module)):
Raul Puri's avatar
Raul Puri committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        model = model.module
    layers = model.model.bert.encoder.layer
    pooler = model.model.bert.pooler
    lmheads = model.model.cls.predictions
    nspheads = model.model.cls.seq_relationship
    embeddings = model.model.bert.embeddings
    param_groups = []
    param_groups += list(get_params_for_weight_decay_optimization(layers))
    param_groups += list(get_params_for_weight_decay_optimization(pooler))
    param_groups += list(get_params_for_weight_decay_optimization(nspheads))
    param_groups += list(get_params_for_weight_decay_optimization(embeddings))
    param_groups += list(get_params_for_weight_decay_optimization(
        lmheads.transform))
    param_groups[1]['params'].append(lmheads.bias)

103
104
105
106
107
108
    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
            if not hasattr(param, 'model_parallel'):
                param.model_parallel = False

Raul Puri's avatar
Raul Puri committed
109
    # Use Adam.
110
111
    betas = (0.9, 0.999)
    optimizer = Adam(param_groups, betas=betas,
Raul Puri's avatar
Raul Puri committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
                     lr=args.lr, weight_decay=args.weight_decay)

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
                                       'min_scale':args.min_scale,
                                       'delayed_shift': args.hysteresis})

    return optimizer


def get_learning_rate_scheduler(optimizer, args):
    """Build the learning rate scheduler."""

    # Add linear learning rate scheduler.
    if args.lr_decay_iters is not None:
        num_iters = args.lr_decay_iters
    else:
134
        num_iters = args.train_iters
Raul Puri's avatar
Raul Puri committed
135
136
137
138
139
140
141
    init_step = -1
    warmup_iter = args.warmup * num_iters
    lr_scheduler = AnnealingLR(optimizer,
                               start_lr=args.lr,
                               warmup_iter=warmup_iter,
                               num_iters=num_iters,
                               decay_style=args.lr_decay_style,
142
143
144
145
                               last_iter=init_step,
                               min_lr=args.min_lr,
                               use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
                               override_lr_scheduler=args.override_lr_scheduler)
Raul Puri's avatar
Raul Puri committed
146
147
148
149

    return lr_scheduler


150
def setup_model_and_optimizer(args):
Raul Puri's avatar
Raul Puri committed
151
152
    """Setup model and optimizer."""

153
    model = get_model(args)
Raul Puri's avatar
Raul Puri committed
154
155
156
157
    optimizer = get_optimizer(model, args)
    lr_scheduler = get_learning_rate_scheduler(optimizer, args)

    if args.load is not None:
158
159
160
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler, args)
    else:
        args.iteration = 0
Raul Puri's avatar
Raul Puri committed
161

162
    return model, optimizer, lr_scheduler
Raul Puri's avatar
Raul Puri committed
163
164


165
def get_batch(data_iterator, timers):
Raul Puri's avatar
Raul Puri committed
166
167
168
169
170
171
172
173
174
175
176
177
    ''' get_batch subdivides the source data into chunks of
    length args.seq_length. If source is equal to the example
    output of the data loading example, with a seq_length limit
    of 2, we'd get the following two Variables for i = 0:
    ┌ a g m s ┐ ┌ b h n t ┐
    └ b h n t ┘ └ c i o u ┘
    Note that despite the name of the function, the subdivison of data is not
    done along the batch dimension (i.e. dimension 1), since that was handled
    by the data loader. The chunks are along dimension 0, corresponding
    to the seq_len dimension in the LSTM. A Variable representing an appropriate
    shard reset mask of the same dimensions is also returned.
    '''
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    # Items and their type.
    keys = ['text', 'types', 'is_random', 'mask', 'mask_labels', 'pad_mask']
    datatype = torch.int64

    # Broadcast data.
    timers('data loader').start()
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    timers('data loader').stop()
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens = data_b['text'].long()
    types = data_b['types'].long()
    next_sentence = data_b['is_random'].long()
    loss_mask = data_b['mask'].float()
    lm_labels = data_b['mask_labels'].long()
    padding_mask = data_b['pad_mask'].byte()
Raul Puri's avatar
Raul Puri committed
198
199
200
201

    return tokens, types, next_sentence, loss_mask, lm_labels, padding_mask


202
def forward_step(data_iterator, model, args, timers):
Raul Puri's avatar
Raul Puri committed
203
204
205
    """Forward step."""

    # Get the batch.
206
    timers('batch generator').start()
Raul Puri's avatar
Raul Puri committed
207
    tokens, types, next_sentence, loss_mask, lm_labels, \
208
209
        padding_mask = get_batch(data_iterator, timers)
    timers('batch generator').stop()
Raul Puri's avatar
Raul Puri committed
210
211
212
    # Forward model.
    output, nsp = model(tokens, types, 1-padding_mask,
                        checkpoint_activations=args.checkpoint_activations)
213
214
215
216
217
218
219

    nsp_loss = F.cross_entropy(nsp.view(-1, 2).contiguous().float(),
                               next_sentence.view(-1).contiguous(),
                               ignore_index=-1)

    losses = mpu.vocab_parallel_cross_entropy(
        output.contiguous().float(), lm_labels.contiguous())
Raul Puri's avatar
Raul Puri committed
220
221
    loss_mask = loss_mask.contiguous()
    lm_loss = torch.sum(
222
        losses.view(-1) * loss_mask.view(-1).float()) / loss_mask.sum()
Raul Puri's avatar
Raul Puri committed
223
224
225
226

    return lm_loss, nsp_loss


227
def backward_step(optimizer, model, lm_loss, nsp_loss, args, timers):
Raul Puri's avatar
Raul Puri committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    """Backward step."""

    # Total loss.
    loss = lm_loss + nsp_loss

    # Backward pass.
    optimizer.zero_grad()
    if args.fp16:
        optimizer.backward(loss, update_master_grads=False)
    else:
        loss.backward()

    # Reduce across processes.
    lm_loss_reduced = lm_loss
    nsp_loss_reduced = nsp_loss
243
244
245
246

    reduced_losses = torch.cat((lm_loss.view(1), nsp_loss.view(1)))
    torch.distributed.all_reduce(reduced_losses.data)
    reduced_losses.data = reduced_losses.data / args.world_size
247
248
    if args.DDP_impl == 'local':
        timers('allreduce').start()
Raul Puri's avatar
Raul Puri committed
249
250
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
251
        timers('allreduce').stop()
252
253
    lm_loss_reduced = reduced_losses[0]
    nsp_loss_reduced = reduced_losses[1]
Raul Puri's avatar
Raul Puri committed
254
255
256
257
258
259
260
261

    # Update master gradients.
    if args.fp16:
        optimizer.update_master_grads()

    # Clipping gradients helps prevent the exploding gradient.
    if args.clip_grad > 0:
        if not args.fp16:
262
            mpu.clip_grad_norm(model.parameters(), args.clip_grad)
Raul Puri's avatar
Raul Puri committed
263
264
265
266
267
268
        else:
            optimizer.clip_master_grads(args.clip_grad)

    return lm_loss_reduced, nsp_loss_reduced


269
270
def train_step(data_iterator, model, optimizer, lr_scheduler,
               args, timers):
Raul Puri's avatar
Raul Puri committed
271
272
273
    """Single training step."""

    # Forward model for one step.
274
275
276
277
    timers('forward').start()
    lm_loss, nsp_loss = forward_step(data_iterator, model,
                                     args, timers)
    timers('forward').stop()
Raul Puri's avatar
Raul Puri committed
278
279

    # Calculate gradients, reduce across processes, and clip.
280
    timers('backward').start()
Raul Puri's avatar
Raul Puri committed
281
    lm_loss_reduced, nsp_loss_reduced = backward_step(optimizer, model, lm_loss,
282
                                                      nsp_loss, args, timers)
283
    timers('backward').stop()
Raul Puri's avatar
Raul Puri committed
284
285

    # Update parameters.
286
    timers('optimizer').start()
Raul Puri's avatar
Raul Puri committed
287
    optimizer.step()
288
    timers('optimizer').stop()
Raul Puri's avatar
Raul Puri committed
289
290
291
292
293
294
295
296
297
298
299

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
        lr_scheduler.step()
    else:
        skipped_iter = 1

    return lm_loss_reduced, nsp_loss_reduced, skipped_iter


300
def train(model, optimizer, lr_scheduler,
301
          train_data_iterator, val_data_iterator, timers, args, writer):
302
    """Train the model."""
Raul Puri's avatar
Raul Puri committed
303
304
305
306
307
308
309
310
311

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_lm_loss = 0.0
    total_nsp_loss = 0.0

    # Iterations.
312
    iteration = args.iteration
Raul Puri's avatar
Raul Puri committed
313
314
315
    skipped_iters = 0

    timers('interval time').start()
316
317
    report_memory_flag = True
    while iteration < args.train_iters:
Raul Puri's avatar
Raul Puri committed
318

319
        lm_loss, nsp_loss, skipped_iter = train_step(train_data_iterator,
Raul Puri's avatar
Raul Puri committed
320
321
322
                                                     model,
                                                     optimizer,
                                                     lr_scheduler,
323
                                                     args, timers)
Raul Puri's avatar
Raul Puri committed
324
325
326
327
        skipped_iters += skipped_iter
        iteration += 1

        # Update losses.
328
329
330
331
        current_lm_loss = lm_loss.data.detach().float()
        current_nsp_loss = nsp_loss.data.detach().float()
        total_lm_loss += current_lm_loss
        total_nsp_loss += current_nsp_loss
Raul Puri's avatar
Raul Puri committed
332
333

        # Logging.
334

335
336
        if args.DDP_impl == 'torch':
            timers_to_log = ['forward', 'backward', 'optimizer',
337
                            'batch generator', 'data loader']
338
339
340
        else:
            timers_to_log = ['forward', 'backward', 'allreduce', 'optimizer',
                             'batch generator', 'data loader']
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

        learning_rate = optimizer.param_groups[0]['lr']

        if writer and args.rank == 0:
            writer.add_scalar('learning_rate', learning_rate, iteration)
            writer.add_scalar('lm_loss', current_lm_loss, iteration)
            writer.add_scalar('nsp_loss', current_nsp_loss, iteration)
            if args.fp16:
                writer.add_scalar('loss_scale', optimizer.loss_scale, iteration)
            normalizer = iteration % args.log_interval
            if normalizer == 0:
                normalizer = args.log_interval
            timers.write(timers_to_log, writer, iteration,
                         normalizer=normalizer)

Raul Puri's avatar
Raul Puri committed
356
357
358
359
        if iteration % args.log_interval == 0:
            avg_nsp_loss = total_nsp_loss.item() / args.log_interval
            avg_lm_loss = total_lm_loss.item() / args.log_interval
            elapsed_time = timers('interval time').elapsed()
360
361
362
            if writer and args.rank == 0:
                writer.add_scalar('iteration_time',
                                  elapsed_time / args.log_interval, iteration)
363
364
            log_string = ' iteration {:8d}/{:8d} |'.format(iteration,
                                                            args.train_iters)
Raul Puri's avatar
Raul Puri committed
365
366
367
            log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
                elapsed_time * 1000.0 / args.log_interval)
            log_string += ' learning rate {:.3E} |'.format(learning_rate)
368
369
            log_string += ' lm loss {:.6E} |'.format(avg_lm_loss)
            log_string += ' nsp loss {:.6E} |'.format(avg_nsp_loss)
Raul Puri's avatar
Raul Puri committed
370
371
372
            if args.fp16:
                log_string += ' loss scale {:.1f} |'.format(
                    optimizer.loss_scale)
373
            print_rank_0(log_string)
Raul Puri's avatar
Raul Puri committed
374
375
            total_nsp_loss = 0.0
            total_lm_loss = 0.0
376
377
378
            if report_memory_flag:
                report_memory('after {} iterations'.format(iteration))
                report_memory_flag = False
379
380
381
382
383
384
385
            timers.log(timers_to_log, normalizer=args.log_interval)

        # Autoresume
        if (iteration % args.adlr_autoresume_interval == 0) and args.adlr_autoresume:
            check_adlr_autoresume_termination(iteration, model, optimizer,
                                              lr_scheduler, args)

Raul Puri's avatar
Raul Puri committed
386
        # Checkpointing
387
388
389
390
391
392
        if args.save and args.save_interval and iteration % args.save_interval == 0:
            save_checkpoint(iteration, model, optimizer, lr_scheduler, args)

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and args.do_valid:
            prefix = 'iteration {}'.format(iteration)
393
394
            evaluate_and_print_results(prefix, val_data_iterator, model, args,
                                       writer, iteration, timers, False)
395
396
397
398
399
400
401
402

        if args.exit_interval and iteration % args.exit_interval == 0:
            torch.distributed.barrier()
            time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            rank = torch.distributed.get_rank()
            print('rank: {} | time: {} | exiting the program at iteration {}'.
                  format(rank, time_str, iteration), flush=True)
            exit()
Raul Puri's avatar
Raul Puri committed
403
404
405
406

    return iteration, skipped_iters


407
def evaluate(data_iterator, model, args, timers, verbose = False):
Raul Puri's avatar
Raul Puri committed
408
409
410
411
412
413
414
415
416
417
    """Evaluation."""

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_lm_loss = 0
    total_nsp_loss = 0

    with torch.no_grad():
        iteration = 0
418
419
420
421
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration, args.eval_iters))
Raul Puri's avatar
Raul Puri committed
422
            # Forward evaluation.
423
424
            lm_loss, nsp_loss = forward_step(data_iterator, model,
                                             args, timers)
Raul Puri's avatar
Raul Puri committed
425
            # Reduce across processes.
426
            if isinstance(model, args.DDP_type):
Raul Puri's avatar
Raul Puri committed
427
428
429
430
431
432
433
434
435
436
437
438
                reduced_losses = torch.cat((lm_loss.view(1), nsp_loss.view(1)))
                torch.distributed.all_reduce(reduced_losses.data)
                reduced_losses.data = reduced_losses.data/args.world_size
                lm_loss = reduced_losses[0]
                nsp_loss = reduced_losses[1]

            total_lm_loss += lm_loss.data.detach().float().item()
            total_nsp_loss += nsp_loss.data.detach().float().item()

    # Move model back to the train mode.
    model.train()

439
440
    total_lm_loss /= args.eval_iters
    total_nsp_loss /= args.eval_iters
Raul Puri's avatar
Raul Puri committed
441
442
443
    return total_lm_loss, total_nsp_loss


444
def evaluate_and_print_results(prefix, data_iterator, model,
445
446
                               args, writer, iteration,
                               timers, verbose=False):
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    """Helper function to evaluate and dump results on screen."""
    lm_loss, nsp_loss = evaluate(data_iterator, model,
                                 args, timers, verbose)
    val_loss = lm_loss + nsp_loss
    print_rank_0('-' * 100)
    string = ' validation loss at {} | '.format(prefix)
    string += 'LM loss: {:.6E} | '.format(lm_loss)
    string += 'NSP loss: {:.6E} | '.format(nsp_loss)
    string += 'total loss: {:.6E}'.format(val_loss)
    length = len(string) + 1
    print_rank_0('-' * length)
    print_rank_0(string)
    print_rank_0('-' * length)

461
462
463
464
465
    if writer and args.rank == 0:
        writer.add_scalar('val_lm_loss', lm_loss, iteration)
        writer.add_scalar('val_nsp_loss', nsp_loss, iteration)
        writer.add_scalar('val_total_loss', val_loss, iteration)

466
467
468
469
470
471
472
473
474
475
476
    return val_loss


def get_train_val_test_data(args):
    """Load the data on rank zero and boradcast number of tokens to all GPUS."""

    (train_data, val_data, test_data) = (None, None, None)

    # Data loader only on rank 0 of each model parallel group.
    if mpu.get_model_parallel_rank() == 0:
        data_config = configure_data()
477
478
        ds_type = 'BERT'
        data_config.set_defaults(data_set_type=ds_type, transpose=False)
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        (train_data, val_data, test_data), tokenizer = data_config.apply(args)
        before = tokenizer.num_tokens
        after = before
        multiple = args.make_vocab_size_divisible_by * \
                   mpu.get_model_parallel_world_size()
        while (after % multiple) != 0:
            after += 1
        print_rank_0('> padded vocab (size: {}) with {} dummy '
                     'tokens (new size: {})'.format(
                         before, after - before, after))
        # Need to broadcast num_tokens and num_type_tokens.
        token_counts = torch.cuda.LongTensor([after,
                                              tokenizer.num_type_tokens,
                                              int(args.do_train), int(args.do_valid), int(args.do_test)])
    else:
        token_counts = torch.cuda.LongTensor([0, 0, 0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(token_counts,
                                mpu.get_model_parallel_src_rank(),
                                group=mpu.get_model_parallel_group())
    num_tokens = token_counts[0].item()
    num_type_tokens = token_counts[1].item()
    args.do_train = token_counts[2].item()
    args.do_valid = token_counts[3].item()
    args.do_test = token_counts[4].item()

    return train_data, val_data, test_data, num_tokens, num_type_tokens
Raul Puri's avatar
Raul Puri committed
507
508
509
510
511
512
513
514
515
516
517
518
519
520


def main():
    """Main training program."""

    # Disable CuDNN.
    torch.backends.cudnn.enabled = False

    # Timer.
    timers = Timers()

    # Arguments.
    args = get_args()

521
522
523
524
525
526
527
528
529
530
531
    writer = None
    if args.tensorboard_dir and args.rank == 0:
        try:
            from torch.utils.tensorboard import SummaryWriter
            writer = SummaryWriter(log_dir = args.tensorboard_dir)
        except ModuleNotFoundError:
            print_rank_0('WARNING: TensorBoard writing requested but is not '
                         'available (are you using PyTorch 1.1.0 or later?), '
                         'no TensorBoard logs will be written.')
            writer = None

Raul Puri's avatar
Raul Puri committed
532
533
    # Pytorch distributed.
    initialize_distributed(args)
534
535
    if torch.distributed.get_rank() == 0:
        print('Pretrain BERT model')
536
537
538
539
540
541
        print_args(args, writer)

    # Autoresume.
    torch.distributed.barrier()
    if args.adlr_autoresume:
        enable_adlr_autoresume(args)
Raul Puri's avatar
Raul Puri committed
542
543
544
545
546

    # Random seeds for reproducability.
    set_random_seed(args.seed)

    # Data stuff.
547
548
    train_data, val_data, test_data, args.tokenizer_num_tokens, \
        args.tokenizer_num_type_tokens = get_train_val_test_data(args)
Raul Puri's avatar
Raul Puri committed
549
550

    # Model, optimizer, and learning rate.
551
552
553
554
555
556
    model, optimizer, lr_scheduler = setup_model_and_optimizer(args)

    if args.resume_dataloader:
        if train_data is not None:
            train_data.batch_sampler.start_iter = args.iteration % \
                                                  len(train_data)
557
558
            print_rank_0('setting training data start iteration to {}'.
                         format(train_data.batch_sampler.start_iter))
559
        if val_data is not None:
560
561
            start_iter_val = (args.iteration // args.eval_interval) * \
                             args.eval_iters
562
563
            val_data.batch_sampler.start_iter = start_iter_val % \
                                                len(val_data)
564
565
            print_rank_0('setting validation data start iteration to {}'.
                         format(val_data.batch_sampler.start_iter))
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

    if train_data is not None:
        train_data_iterator = iter(train_data)
    else:
        train_data_iterator = None
    if val_data is not None:
        val_data_iterator = iter(val_data)
    else:
        val_data_iterator = None

    iteration = 0
    if args.train_iters > 0:
        if args.do_train:
            iteration, skipped = train(model, optimizer,
                                       lr_scheduler,
                                       train_data_iterator,
                                       val_data_iterator,
583
                                       timers, args, writer)
584
585
586
        if args.do_valid:
            prefix = 'the end of training for val data'
            val_loss = evaluate_and_print_results(prefix, val_data_iterator,
587
588
                                                  model, args, writer, iteration,
                                                  timers, False)
589
590
591

    if args.save and iteration != 0:
        save_checkpoint(iteration, model, optimizer, lr_scheduler, args)
Raul Puri's avatar
Raul Puri committed
592
593

    if test_data is not None:
594
595
596
597
598
        test_data_iterator = iter(test_data)
    else:
        test_data_iterator = None

    if args.do_test:
Raul Puri's avatar
Raul Puri committed
599
        # Run on test data.
600
601
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, test_data_iterator,
602
                                   model, args, None, 0, timers, True)
Raul Puri's avatar
Raul Puri committed
603
604
605
606


if __name__ == "__main__":
    main()