checkpoint_saver_megatron.py 12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import argparse
import concurrent.futures
import os
import sys

import torch

def add_arguments(parser):
    group = parser.add_argument_group(title='Megatron saver')

    group.add_argument('--megatron-path', type=str, default=None,
                       help='Base directory of Megatron repository')

    group.add_argument('--target-tensor-parallel-size', type=int,
                       help='Target tensor model parallel size, defaults to the tensor parallel size '
                       'in the input checkpoint if provided by the loader, otherwise to 1')
    group.add_argument('--target-pipeline-parallel-size', type=int,
                       help='Target tensor model parallel size, default to the pipeline parall size '
                       'in the input checkpoint if provided by the loader, otherwise to 1')

def save_checkpoint(queue, args):

    # Search in directory above this
    sys.path.append(os.path.abspath(
        os.path.join(os.path.dirname(__file__),
                     os.path.pardir)))
    if args.megatron_path is not None:
        sys.path.insert(0, args.megatron_path)

    try:
        from megatron.checkpointing import save_checkpoint
        from megatron.global_vars import set_global_variables, get_args
33
        from megatron.model import ModelType
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        from megatron import mpu, fused_kernels
    except ModuleNotFoundError:
        print("Unable to import Megatron, please specify the path to Megatron using --megatron-path. Exiting.")
        exit(1)

    def queue_get():
        val = queue.get()
        if val == "exit":
            print("Loader exited, exiting saver")
            exit(1)
        return val

    md = queue_get()


    if args.target_tensor_parallel_size is None:
        if hasattr(md, 'previous_tensor_parallel_size'):
            args.target_tensor_parallel_size = md.previous_tensor_parallel_size
        else:
            print("loader did not provide a tensor parallel size and --target-tensor-parallel-size not provided on command line. "
                  "Default to 1.")
            args.target_tensor_parallel_size = 1

    if args.target_pipeline_parallel_size is None:
        if hasattr(md, 'previous_pipeline_parallel_size'):
            args.target_pipeline_parallel_size = md.previous_pipeline_parallel_size
        else:
            print("loader did not provide a pipeline parallel size and --target-pipeline-parallel-size not provided on command line. "
                  "Default to 1.")
            args.target_pipeline_parallel_size = 1


    # Arguments do sanity checks on the world size, but we don't care,
    # so trick it into thinking we are plenty of processes
    if args.target_tensor_parallel_size is not None and args.target_pipeline_parallel_size is not None:
        os.environ["WORLD_SIZE"] = f'{args.target_tensor_parallel_size * args.target_pipeline_parallel_size}'

    # We want all arguments to come from us
    sys.argv = ['script.py',
                '--num-layers', str(md.num_layers),
                '--hidden-size', str(md.hidden_size),
                '--seq-length', str(md.seq_length),
                '--num-attention-heads', str(md.num_attention_heads),
                '--max-position-embeddings', str(md.max_position_embeddings),
                '--tokenizer-type', str(md.tokenizer_type),
                '--tensor-model-parallel-size', str(args.target_tensor_parallel_size),
                '--pipeline-model-parallel-size', str(args.target_pipeline_parallel_size),
                '--no-masked-softmax-fusion',
                '--no-bias-gelu-fusion',
                '--no-bias-dropout-fusion',
                '--use-cpu-initialization',
                '--micro-batch-size', '1',
                '--no-load-optim',
                '--no-load-rng',
                '--no-save-optim',
                '--no-save-rng',
                '--no-initialization',
                '--save-interval', '1',
                '--save', args.save_dir
                ]
    if md.params_dtype == torch.float16:
        sys.argv.append('--fp16')
    elif md.params_dtype == torch.bfloat16:
        sys.argv.append('--bf16')

    if md.model_type == 'BERT' and not md.bert_binary_head:
        sys.argv.append('--bert-no-binary-head')
    set_global_variables()

    # margs = megatron args
    margs = get_args()

106
107
108
109
110
111
112
113
114
115
116
117
118
119
    # Determine how to make our models
    if md.model_type == 'GPT':
        from pretrain_gpt import model_provider
        margs.model_type = ModelType.encoder_or_decoder
    elif md.model_type == 'BERT':
        from pretrain_bert import model_provider
        margs.model_type = ModelType.encoder_or_decoder
    else:
        raise Exception(f'unrecognized model type: {args.model_type}')

    def get_models(count, dtype, pre_process, post_process):
        models = [model_provider(pre_process, post_process).to(dtype) for _ in range(count)]
        return models

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    # fake initializing distributed
    mpu.initialize.set_tensor_model_parallel_world_size(args.target_tensor_parallel_size)
    mpu.initialize.set_pipeline_model_parallel_world_size(args.target_pipeline_parallel_size)
    mpu.initialize.set_tensor_model_parallel_rank(0)
    mpu.initialize.set_pipeline_model_parallel_rank(0)
    fused_kernels.load(margs)

    # Embeddings
    #-----------
    pos_embed = queue_get()
    full_word_embed = queue_get()

    # Tell Megatron what our full size is
    margs.padded_vocab_size = full_word_embed.shape[0]
    if margs.padded_vocab_size % args.target_tensor_parallel_size != 0:
        print("source vocab size is not evenly divisble by target tensor parallel size")
        exit(1)

    # Split into new tensor model parallel sizes
    out_word_embed = torch.chunk(full_word_embed, args.target_tensor_parallel_size, dim=0)

    # Make models for first pipeline stage and fill in embeddings
    mpu.initialize.set_pipeline_model_parallel_rank(0)
    post_process = args.target_pipeline_parallel_size == 1
    models = get_models(args.target_tensor_parallel_size, md.params_dtype, True, post_process)
    for tp_rank, model in enumerate(models):
        model.language_model.embedding.word_embeddings.weight.data.copy_(out_word_embed[tp_rank])
        model.language_model.embedding.position_embeddings.weight.data.copy_(pos_embed)

    # Transformer layers
    #-------------------
    for pp_rank in range(args.target_pipeline_parallel_size):
        # For later pipeline parallel ranks, make the new models
        if pp_rank > 0:
            mpu.initialize.set_pipeline_model_parallel_rank(pp_rank)
            post_process = pp_rank == args.target_pipeline_parallel_size - 1
            models = get_models(args.target_tensor_parallel_size, md.params_dtype, False, post_process)

158
        for layer in range(len(models[0].language_model.encoder.layers)):
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
            # get full tensors
            input_layernorm_weight = queue_get()
            input_layernorm_bias = queue_get()
            full_qkv_weight = queue_get()
            full_qkv_bias = queue_get()
            full_dense_weight = queue_get()
            dense_bias = queue_get()
            post_layernorm_weight = queue_get()
            post_layernorm_bias = queue_get()
            full_mlp_l0_weight = queue_get()
            full_mlp_l0_bias = queue_get()
            full_mlp_l1_weight = queue_get()
            mlp_l1_bias = queue_get()

            # Split up the parallel tensors
            out_qkv_weight = torch.chunk(full_qkv_weight, args.target_tensor_parallel_size, dim=0)
            out_qkv_bias = torch.chunk(full_qkv_bias, args.target_tensor_parallel_size, dim=0)
            out_dense_weight = torch.chunk(full_dense_weight, args.target_tensor_parallel_size, dim=1)
            out_mlp_l0_weight = torch.chunk(full_mlp_l0_weight, args.target_tensor_parallel_size, dim=0)
            out_mlp_l0_bias = torch.chunk(full_mlp_l0_bias, args.target_tensor_parallel_size, dim=0)
            out_mlp_l1_weight = torch.chunk(full_mlp_l1_weight, args.target_tensor_parallel_size, dim=1)

            # Save them to the model
            for tp_rank in range(args.target_tensor_parallel_size):
                l = models[tp_rank].language_model.encoder.layers[layer]
                l.input_layernorm.weight.data.copy_(input_layernorm_weight)
                l.input_layernorm.bias.data.copy_(input_layernorm_bias)
                l.self_attention.query_key_value.weight.data.copy_(out_qkv_weight[tp_rank])
                l.self_attention.query_key_value.bias.data.copy_(out_qkv_bias[tp_rank])
                l.self_attention.dense.weight.data.copy_(out_dense_weight[tp_rank])
                l.self_attention.dense.bias.data.copy_(dense_bias)
                l.post_attention_layernorm.weight.data.copy_(post_layernorm_weight)
                l.post_attention_layernorm.bias.data.copy_(post_layernorm_bias)
                l.mlp.dense_h_to_4h.weight.data.copy_(out_mlp_l0_weight[tp_rank])
                l.mlp.dense_h_to_4h.bias.data.copy_(out_mlp_l0_bias[tp_rank])
                l.mlp.dense_4h_to_h.weight.data.copy_(out_mlp_l1_weight[tp_rank])
                l.mlp.dense_4h_to_h.bias.data.copy_(mlp_l1_bias)

        if post_process:
            final_layernorm_weight = queue_get()
            final_layernorm_bias = queue_get()
            for tp_rank in range(args.target_tensor_parallel_size):
                models[tp_rank].language_model.encoder.final_layernorm.weight.data.copy_(final_layernorm_weight)
                models[tp_rank].language_model.encoder.final_layernorm.bias.data.copy_(final_layernorm_bias)
                if pp_rank != 0:
                    # Copy word embeddings to final pipeline rank
                    models[tp_rank].word_embeddings.weight.data.copy_(out_word_embed[tp_rank])
            del final_layernorm_weight
            del final_layernorm_bias

            name = queue_get()
            if name == "pooler":
                if not hasattr(models[0].language_model, 'pooler'):
                    print("ERROR: got a pooler, but model does not have one")
                    exit(1)
                pooler_weight = queue_get()
                pooler_bias = queue_get()
                for tp_rank in range(args.target_tensor_parallel_size):
                    models[tp_rank].language_model.pooler.dense.weight.data.copy_(pooler_weight)
                    models[tp_rank].language_model.pooler.dense.bias.data.copy_(pooler_bias)
                name = queue_get()
                del pooler_weight
                del pooler_bias

            if name == "lm head":
                if not hasattr(models[0], 'lm_head'):
                    print("ERROR: got an lm head, but model does not have one")
                    exit(1)
                lm_head_dense_weight = queue_get()
                lm_head_dense_bias = queue_get()
                lm_head_layernorm_weight = queue_get()
                lm_head_layernorm_bias = queue_get()
                for tp_rank in range(args.target_tensor_parallel_size):
                    models[tp_rank].lm_head.dense.weight.data.copy_(lm_head_dense_weight)
                    models[tp_rank].lm_head.dense.bias.data.copy_(lm_head_dense_bias)
                    models[tp_rank].lm_head.layernorm.weight.data.copy_(lm_head_layernorm_weight)
                    models[tp_rank].lm_head.layernorm.bias.data.copy_(lm_head_layernorm_bias)
                name = queue_get()

            if name == "binary head":
                if not hasattr(models[0], 'binary_head'):
                    print("ERROR: got a binary head, but model does not have one")
                    exit(1)
                binary_head_weight = queue_get()
                binary_head_bias = queue_get()
                for tp_rank in range(args.target_tensor_parallel_size):
                    models[tp_rank].binary_head.weight.data.copy_(binary_head_weight)
                    models[tp_rank].binary_head.bias.data.copy_(binary_head_bias)
                name = queue_get()

            if name != "done":
                print("ERROR: got some more data but were expecting to be done")

        for tp_rank in range(args.target_tensor_parallel_size):
            mpu.initialize.set_tensor_model_parallel_rank(tp_rank)
            save_checkpoint(md.iteration, [models[tp_rank]], None, None)
    print("Done!")