pretrain_albert.py 8.14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
"""Pretrain ALBERT"""
17
18
19
20
21
22
23
24
25
26

import torch
import torch.nn.functional as F

from megatron import mpu
from megatron.model import BertModel
from megatron.utils import print_rank_0
from megatron.utils import reduce_losses
from megatron.utils import vocab_size_with_padding
from megatron.training import run
27
from megatron.data.albert_dataset import build_train_valid_test_datasets
28
29
from megatron.data_utils.samplers import DistributedBatchSampler

30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def model_provider(args):
    """Build the model."""

    print_rank_0('building BERT model ...')

    model = BertModel(
        num_layers=args.num_layers,
        vocab_size=args.vocab_size,
        hidden_size=args.hidden_size,
        num_attention_heads=args.num_attention_heads,
        embedding_dropout_prob=args.hidden_dropout,
        attention_dropout_prob=args.attention_dropout,
        output_dropout_prob=args.hidden_dropout,
        max_sequence_length=args.max_position_embeddings,
        checkpoint_activations=args.checkpoint_activations,
        checkpoint_num_layers=args.checkpoint_num_layers,
        add_binary_head=True,
        layernorm_epsilon=args.layernorm_epsilon,
        num_tokentypes=args.tokentype_size,
50
51
52
        parallel_output=True,
        apply_query_key_layer_scaling=args.apply_query_key_layer_scaling,
        attention_softmax_in_fp32=args.attention_softmax_in_fp32)
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

    return model


def get_batch(data_iterator, timers):

    # Items and their type.
    keys = ['text', 'types', 'labels', 'is_random', 'loss_mask', 'padding_mask']
    datatype = torch.int64

    # Broadcast data.
    timers('data loader').start()
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    timers('data loader').stop()
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens = data_b['text'].long()
    types = data_b['types'].long()
    sentence_order = data_b['is_random'].long()
    loss_mask = data_b['loss_mask'].float()
    lm_labels = data_b['labels'].long()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
78
    padding_mask = data_b['padding_mask'].long()
79
80
81
82
83
84
85
86
87
88
89
90
91
92

    return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask


def forward_step(data_iterator, model, args, timers):
    """Forward step."""

    # Get the batch.
    timers('batch generator').start()
    tokens, types, sentence_order, loss_mask, lm_labels, padding_mask \
        = get_batch(data_iterator, timers)
    timers('batch generator').stop()

    # Forward model.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
93
    lm_logits, sop_logits = model(tokens, padding_mask, tokentype_ids=types)
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

    sop_loss = F.cross_entropy(sop_logits.view(-1, 2).contiguous().float(),
                               sentence_order.view(-1).contiguous(),
                               ignore_index=-1)

    lm_loss_ = mpu.vocab_parallel_cross_entropy(lm_logits.contiguous().float(),
                                                lm_labels.contiguous())
    lm_loss = torch.sum(
        lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()

    loss = lm_loss + sop_loss

    reduced_losses = reduce_losses([lm_loss, sop_loss])

    return loss, {'lm loss': reduced_losses[0], 'sop loss': reduced_losses[1]}


def get_train_val_test_data(args):
    """Load the data on rank zero and boradcast number of tokens to all GPUS."""

114
    (train_data, valid_data, test_data) = (None, None, None)
115
116
117

    # Data loader only on rank 0 of each model parallel group.
    if mpu.get_model_parallel_rank() == 0:
118
119
120
121
        print_rank_0('> building train, validation, and test datasets '
                     'for ALBERT ...')

        if args.data_loader is None:
122
            args.data_loader = 'binary'
123
124
125
126
127
128
129
        if args.data_loader != 'binary':
            print('Unsupported {} data loader for ALBERT.'.format(
                args.data_loader))
            exit(1)
        if not args.data_path:
            print('ALBERT only supports a unified dataset specified '
                  'with --data-path')
130
            exit(1)
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

        data_parallel_size = mpu.get_data_parallel_world_size()
        data_parallel_rank = mpu.get_data_parallel_rank()
        global_batch_size = args.batch_size * data_parallel_size

        # Number of train/valid/test samples.
        train_iters = args.train_iters
        eval_iters = (train_iters // args.eval_interval + 1) * args.eval_iters
        test_iters = args.eval_iters
        train_val_test_num_samples = [args.train_iters * global_batch_size,
                                      eval_iters * global_batch_size,
                                      test_iters * global_batch_size]
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

148
        assert len(args.data_path) == 1
149
150
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
            vocab_file=args.vocab,
151
            data_prefix=args.data_path[0],
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
            data_impl=args.data_impl,
            splits_string=args.split,
            train_valid_test_num_samples=train_val_test_num_samples,
            max_seq_length=args.seq_length,
            masked_lm_prob=args.mask_prob,
            short_seq_prob=args.short_seq_prob,
            seed=args.seed,
            skip_warmup=args.skip_mmap_warmup)
        print_rank_0("> finished creating ALBERT datasets ...")

        def make_data_loader_(dataset):
            if not dataset:
                return None
            # Use a simple sampler with distributed batch sampler.
            sampler = torch.utils.data.SequentialSampler(dataset)
            batch_sampler = DistributedBatchSampler(
                sampler=sampler,
                batch_size=global_batch_size,
                drop_last=True,
                rank=data_parallel_rank,
                world_size=data_parallel_size)
            # Torch dataloader.
            return torch.utils.data.DataLoader(dataset,
                                               batch_sampler=batch_sampler,
                                               num_workers=args.num_workers,
                                               pin_memory=True)

        train_data = make_data_loader_(train_ds)
        valid_data = make_data_loader_(valid_ds)
        test_data = make_data_loader_(test_ds)

        do_train = train_data is not None and args.train_iters > 0
        do_valid = valid_data is not None and args.eval_iters > 0
        do_test = test_data is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        num_tokens = vocab_size_with_padding(train_ds.num_tokens(), args)
        token_counts = torch.cuda.LongTensor([num_tokens,
                                              2, # hard coded num_type_tokens
                                              int(do_train),
                                              int(do_valid),
                                              int(do_test)])
193
194
195
196
197
198
199
    else:
        token_counts = torch.cuda.LongTensor([0, 0, 0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(token_counts,
                                mpu.get_model_parallel_src_rank(),
                                group=mpu.get_model_parallel_group())
200
201
    args.vocab_size = token_counts[0].item()
    args.tokentype_size = token_counts[1].item()
202
203
204
205
    args.do_train = token_counts[2].item()
    args.do_valid = token_counts[3].item()
    args.do_test = token_counts[4].item()

206
    return train_data, valid_data, test_data
207
208
209
210
211
212


if __name__ == "__main__":

    run('Pretrain BERT model', get_train_val_test_data,
        model_provider, forward_step)