classification.py 5.42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Classification model."""

import torch

from megatron.model.bert_model import bert_attention_mask_func
from megatron.model.bert_model import bert_extended_attention_mask
from megatron.model.bert_model import bert_position_ids
from megatron.model.language_model import get_language_model
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.utils import scaled_init_method_normal
from megatron.module import MegatronModule
from megatron.utils import print_rank_0


class Classification(MegatronModule):

    def __init__(self,
                 num_classes,
                 num_layers,
                 vocab_size,
                 hidden_size,
                 num_attention_heads,
                 embedding_dropout_prob,
                 attention_dropout_prob,
                 output_dropout_prob,
                 max_sequence_length,
                 checkpoint_activations,
                 checkpoint_num_layers=1,
                 layernorm_epsilon=1.0e-5,
                 init_method_std=0.02,
                 num_tokentypes=2,
                 apply_query_key_layer_scaling=False,
                 attention_softmax_in_fp32=False):

        super(Classification, self).__init__()

        self.num_classes = num_classes
        init_method = init_method_normal(init_method_std)

        self.language_model, self._language_model_key = get_language_model(
            num_layers=num_layers,
            vocab_size=vocab_size,
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            embedding_dropout_prob=embedding_dropout_prob,
            attention_dropout_prob=attention_dropout_prob,
            output_dropout_prob=output_dropout_prob,
            max_sequence_length=max_sequence_length,
            num_tokentypes=num_tokentypes,
            add_pooler=True,
            attention_mask_func=bert_attention_mask_func,
            checkpoint_activations=checkpoint_activations,
            checkpoint_num_layers=checkpoint_num_layers,
            layernorm_epsilon=layernorm_epsilon,
            init_method=init_method,
            scaled_init_method=scaled_init_method_normal(init_method_std,
                                                         num_layers),
                        residual_connection_post_layernorm=False,
            apply_query_key_layer_scaling=apply_query_key_layer_scaling,
            attention_softmax_in_fp32=attention_softmax_in_fp32)

        # Multi-choice head.
        self.classification_dropout = torch.nn.Dropout(output_dropout_prob)
        self.classification_head = get_linear_layer(hidden_size,
                                                    self.num_classes,
                                                    init_method)
        self._classification_head_key = 'classification_head'


    def forward(self, input_ids, attention_mask, tokentype_ids):

        extended_attention_mask = bert_extended_attention_mask(
            attention_mask, next(self.language_model.parameters()).dtype)
        position_ids = bert_position_ids(input_ids)

        _, pooled_output = self.language_model(input_ids,
                                               position_ids,
                                               extended_attention_mask,
                                               tokentype_ids=tokentype_ids)

        # Output.
        classification_output = self.classification_dropout(pooled_output)
        classification_logits = self.classification_head(classification_output)

        # Reshape back to separate choices.
        classification_logits = classification_logits.view(-1, self.num_classes)

        return classification_logits


    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
        state_dict_[self._classification_head_key] \
            = self.classification_head.state_dict(
                destination, prefix, keep_vars)
        return state_dict_


    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
        if self._classification_head_key in state_dict:
            self.classification_head.load_state_dict(
                state_dict[self._classification_head_key], strict=strict)
        else:
            print_rank_0('***WARNING*** could not find {} in the checkpoint, '
                         'initializing to random'.format(
                             self._classification_head_key))