"lm_eval/models/seq2seq.py" did not exist on "8d608117e9ecc68b1bbf583152c6ab4c1b183e52"
layers.py 19.3 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# Parts of the code here are adapted from PyTorch
# repo: https://github.com/pytorch/pytorch


import math

import torch
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn.parameter import Parameter

28
29
from .initialize import get_tensor_model_parallel_rank
from .initialize import get_tensor_model_parallel_world_size
30
from .initialize import get_tensor_model_parallel_group
31
32
33
34
from .mappings import copy_to_tensor_model_parallel_region
from .mappings import gather_from_tensor_model_parallel_region
from .mappings import reduce_from_tensor_model_parallel_region
from .mappings import scatter_to_tensor_model_parallel_region
35
36
37
38
from .random import get_cuda_rng_tracker
from .utils import divide
from .utils import split_tensor_along_last_dim
from .utils import VocabUtility
39
from megatron import get_args
40

mohammad's avatar
mohammad committed
41
42
43
44
45
46

_MODEL_PARALLEL_ATTRIBUTE_DEFAULTS = {'tensor_model_parallel': False,
                                      'partition_dim': -1,
                                      'partition_stride': 1}


mohammad's avatar
mohammad committed
47
48
49
50
51
52
def param_is_not_tensor_parallel_duplicate(param):
    return (hasattr(param, 'tensor_model_parallel') and
            param.tensor_model_parallel) or (
                get_tensor_model_parallel_rank() == 0)


mohammad's avatar
mohammad committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def set_tensor_model_parallel_attributes(tensor, is_parallel, dim, stride):
    # Make sure the attributes are not set.
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        assert not hasattr(tensor, attribute)
    # Set the attributes.
    setattr(tensor, 'tensor_model_parallel', is_parallel)
    setattr(tensor, 'partition_dim', dim)
    setattr(tensor, 'partition_stride', stride)


def set_defaults_if_not_set_tensor_model_parallel_attributes(tensor):
    def maybe_set(attribute, value):
        if not hasattr(tensor, attribute):
            setattr(tensor, attribute, value)
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        maybe_set(attribute, _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS[attribute])


def copy_tensor_model_parallel_attributes(destination_tensor, source_tensor):
    def maybe_copy(attribute):
        if hasattr(source_tensor, attribute):
            setattr(destination_tensor, attribute,
                    getattr(source_tensor, attribute))
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        maybe_copy(attribute)


80
81
82
83
def _initialize_affine_weight_gpu(weight, init_method,
                                  partition_dim, stride=1):
    """Initialize affine weight for model parallel on GPU."""

mohammad's avatar
mohammad committed
84
85
86
87
88
    set_tensor_model_parallel_attributes(tensor=weight,
                                         is_parallel=True,
                                         dim=partition_dim,
                                         stride=stride)

89
90
91
92
93
94
95
96
    with get_cuda_rng_tracker().fork():
        init_method(weight)


def _initialize_affine_weight_cpu(weight, output_size, input_size,
                                  per_partition_size, partition_dim,
                                  init_method, stride=1,
                                  return_master_weight=False):
97
98
99
100
    """Initialize affine weight for model parallel.

    Build the master weight on all processes and scatter
    the relevant chunk."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
101

mohammad's avatar
mohammad committed
102
103
104
105
    set_tensor_model_parallel_attributes(tensor=weight,
                                         is_parallel=True,
                                         dim=partition_dim,
                                         stride=stride)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
106

107
108
    # Initialize master weight
    master_weight = torch.empty(output_size, input_size,
109
                                dtype=torch.float,
110
111
                                requires_grad=False)
    init_method(master_weight)
112
113
    args = get_args()
    master_weight = master_weight.to(dtype=args.params_dtype)
114
115
116
117
118

    # Split and copy
    per_partition_per_stride_size = divide(per_partition_size, stride)
    weight_list = torch.split(master_weight, per_partition_per_stride_size,
                              dim=partition_dim)
Jared Casper's avatar
Jared Casper committed
119
    rank = get_tensor_model_parallel_rank()
120
    world_size = get_tensor_model_parallel_world_size()
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    my_weight_list = weight_list[rank::world_size]

    with torch.no_grad():
        torch.cat(my_weight_list, dim=partition_dim, out=weight)
    if return_master_weight:
        return master_weight
    return None


class VocabParallelEmbedding(torch.nn.Module):
    """Embedding parallelized in the vocabulary dimension.

    This is mainly adapted from torch.nn.Embedding and all the default
    values are kept.
    Arguments:
        num_embeddings: vocabulary size.
        embedding_dim: size of hidden state.
        init_method: method to initialize weights.
    """
Neel Kant's avatar
Neel Kant committed
140

141
142
143
144
145
146
147
148
149
150
151
152
153
    def __init__(self, num_embeddings, embedding_dim,
                 init_method=init.xavier_normal_):
        super(VocabParallelEmbedding, self).__init__()
        # Keep the input dimensions.
        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        # Set the detauls for compatibility.
        self.padding_idx = None
        self.max_norm = None
        self.norm_type = 2.
        self.scale_grad_by_freq = False
        self.sparse = False
        self._weight = None
154
        self.tensor_model_parallel_size = get_tensor_model_parallel_world_size()
155
156
157
        # Divide the weight matrix along the vocaburaly dimension.
        self.vocab_start_index, self.vocab_end_index = \
            VocabUtility.vocab_range_from_global_vocab_size(
158
159
                self.num_embeddings, get_tensor_model_parallel_rank(),
                self.tensor_model_parallel_size)
160
        self.num_embeddings_per_partition = self.vocab_end_index - \
Neel Kant's avatar
Neel Kant committed
161
            self.vocab_start_index
162

163
164
        # Allocate weights and initialize.
        args = get_args()
165
        if args.use_cpu_initialization:
166
167
168
169
170
171
172
173
174
175
176
177
            self.weight = Parameter(torch.empty(
                self.num_embeddings_per_partition, self.embedding_dim,
                dtype=args.params_dtype))
            _initialize_affine_weight_cpu(
                self.weight, self.num_embeddings, self.embedding_dim,
                self.num_embeddings_per_partition, 0, init_method)
        else:
            self.weight = Parameter(torch.empty(
                self.num_embeddings_per_partition, self.embedding_dim,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            _initialize_affine_weight_gpu(self.weight, init_method,
                                          partition_dim=0, stride=1)
Sangkug Lym's avatar
Sangkug Lym committed
178
179
            setattr(self.weight, 'fuse_gradient_accumulation',
                    args.gradient_accumulation_fusion)
180
181

    def forward(self, input_):
182
        if self.tensor_model_parallel_size > 1:
183
184
185
186
187
188
189
190
191
            # Build the mask.
            input_mask = (input_ < self.vocab_start_index) | \
                         (input_ >= self.vocab_end_index)
            # Mask the input.
            masked_input = input_.clone() - self.vocab_start_index
            masked_input[input_mask] = 0
        else:
            masked_input = input_
            # Get the embeddings.
192
193
194
195
196
        output_parallel = F.embedding(masked_input, self.weight,
                                      self.padding_idx, self.max_norm,
                                      self.norm_type, self.scale_grad_by_freq,
                                      self.sparse)
        # Mask the output embedding.
197
        if self.tensor_model_parallel_size > 1:
198
            output_parallel[input_mask, :] = 0.0
199
        # Reduce across all the model parallel GPUs.
200
        output = reduce_from_tensor_model_parallel_region(output_parallel)
201
202
203
        return output


Sangkug Lym's avatar
Sangkug Lym committed
204
class LinearWithGradAccumulationAndAsyncAllreduce(torch.autograd.Function):
205
    """
Sangkug Lym's avatar
Sangkug Lym committed
206
207
    Linear layer execution with asynchronous all-reduce and gradient accumulation
    fusion in backprop.
208
209
    """
    @staticmethod
Sangkug Lym's avatar
Sangkug Lym committed
210
211
    def forward(ctx, input, weight, bias, gradient_accumulation_fusion,
                async_grad_allreduce):
212
        ctx.save_for_backward(input, weight)
slym's avatar
slym committed
213
        ctx.use_bias = bias is not None
Sangkug Lym's avatar
Sangkug Lym committed
214
215
        ctx.gradient_accumulation_fusion = gradient_accumulation_fusion
        ctx.async_grad_allreduce = async_grad_allreduce
216
        output = torch.matmul(input, weight.t())
slym's avatar
slym committed
217
        if bias is not None:
218
219
220
221
222
            output = output + bias
        return output

    @staticmethod
    def backward(ctx, grad_output):
Sangkug Lym's avatar
Sangkug Lym committed
223
        import fused_dense_cuda
224
225
226
        input, weight = ctx.saved_tensors
        use_bias = ctx.use_bias
        grad_input = grad_output.matmul(weight)
Sangkug Lym's avatar
Sangkug Lym committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

        # Convert the tensor shapes to 2D for execution compatibility
        grad_output = grad_output.view(grad_output.shape[0] * grad_output.shape[1],
                                       grad_output.shape[2])
        input = input.view(input.shape[0] * input.shape[1], input.shape[2])

        if ctx.async_grad_allreduce:
            # Asynchronous all-reduce
            handle = torch.distributed.all_reduce(
                    grad_input, group=get_tensor_model_parallel_group(), async_op=True)
            # Delay the start of weight gradient computation shortly (3us) to have
            # all-reduce scheduled first and have GPU resources allocated
            _ = torch.empty(1, device=grad_output.device) + 1
        if ctx.gradient_accumulation_fusion:
            fused_dense_cuda.wgrad_gemm_accum_fp32(input, grad_output, weight.main_grad)
            grad_weight = None
        else:
            # Matrix multiply with asynchronous all-reduce execution
            grad_weight = grad_output.t().matmul(input)
246
        grad_bias = grad_output.sum(dim=0) if use_bias else None
Sangkug Lym's avatar
Sangkug Lym committed
247
248
249
        if ctx.async_grad_allreduce:
            handle.wait()
        return grad_input, grad_weight, grad_bias, None, None
250
251


252
253
254
255
256
257
258
259
260
261
class ColumnParallelLinear(torch.nn.Module):
    """Linear layer with column parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its second dimension as A = [A_1, ..., A_p].

    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias
Sangkug Lym's avatar
Sangkug Lym committed
262
        gather_output: If true, call all-gather on output and make Y available
263
264
265
266
267
268
269
270
                       to all GPUs, otherwise, every GPU will have its output
                       which is Y_i = XA_i
        init_method: method to initialize weights. Note that bias is always set
                     to zero.
        stride: For the strided linear layers.
        keep_master_weight_for_test: This was added for testing and should be
                                     set to False. It returns the master weights
                                     used for initialization.
271
272
273
        skip_bias_add: This was added to enable performance optimations where bias
                       can be fused with other elementwise operations. we skip 
                       adding bias but instead return it.
274
    """
Neel Kant's avatar
Neel Kant committed
275

276
277
    def __init__(self, input_size, output_size, bias=True, gather_output=True,
                 init_method=init.xavier_normal_, stride=1,
278
279
                 keep_master_weight_for_test=False,
                 skip_bias_add=False):
280
281
282
283
284
285
286
        super(ColumnParallelLinear, self).__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.gather_output = gather_output
        # Divide the weight matrix along the last dimension.
287
        world_size = get_tensor_model_parallel_world_size()
288
        self.output_size_per_partition = divide(output_size, world_size)
289
        self.skip_bias_add = skip_bias_add
290
291
292
293

        # Parameters.
        # Note: torch.nn.functional.linear performs XA^T + b and as a result
        # we allocate the transpose.
294
295
        # Initialize weight.
        args = get_args()
296
        if args.use_cpu_initialization:
297
298
299
300
301
302
303
304
305
306
307
308
309
            self.weight = Parameter(torch.empty(self.output_size_per_partition,
                                                self.input_size,
                                                dtype=args.params_dtype))
            self.master_weight = _initialize_affine_weight_cpu(
                self.weight, self.output_size, self.input_size,
                self.output_size_per_partition, 0, init_method,
                stride=stride, return_master_weight=keep_master_weight_for_test)
        else:
            self.weight = Parameter(torch.empty(
                self.output_size_per_partition, self.input_size,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            _initialize_affine_weight_gpu(self.weight, init_method,
                                          partition_dim=0, stride=stride)
hwijeen's avatar
hwijeen committed
310

311
        if bias:
312
            if args.use_cpu_initialization:
313
314
315
316
317
318
319
                self.bias = Parameter(torch.empty(
                    self.output_size_per_partition, dtype=args.params_dtype))
            else:
                self.bias = Parameter(torch.empty(
                    self.output_size_per_partition,
                    device=torch.cuda.current_device(),
                    dtype=args.params_dtype))
320
            set_tensor_model_parallel_attributes(self.bias, True, 0, stride)
321
322
323
324
325
            # Always initialize bias to zero.
            with torch.no_grad():
                self.bias.zero_()
        else:
            self.register_parameter('bias', None)
slym's avatar
slym committed
326
        self.async_tensor_model_parallel_allreduce = (
Sangkug Lym's avatar
Sangkug Lym committed
327
                args.async_tensor_model_parallel_allreduce and
slym's avatar
slym committed
328
                world_size > 1)
Sangkug Lym's avatar
Sangkug Lym committed
329
330
331
        self.gradient_accumulation_fusion = args.gradient_accumulation_fusion
        setattr(self.weight, 'fuse_gradient_accumulation',
                self.gradient_accumulation_fusion)
332

333
334

    def forward(self, input_):
335
        bias = self.bias if not self.skip_bias_add else None
336

slym's avatar
slym committed
337
        if self.async_tensor_model_parallel_allreduce:
Sangkug Lym's avatar
Sangkug Lym committed
338
            input_parallel = input_
339
340
341
        else:
            # Set up backprop all-reduce.
            input_parallel = copy_to_tensor_model_parallel_region(input_)
Sangkug Lym's avatar
Sangkug Lym committed
342
343
344
345
        # Matrix multiply.
        output_parallel = LinearWithGradAccumulationAndAsyncAllreduce.apply(
            input_parallel, self.weight, bias, self.gradient_accumulation_fusion,
            self.async_tensor_model_parallel_allreduce)
346
347
        if self.gather_output:
            # All-gather across the partitions.
348
            output = gather_from_tensor_model_parallel_region(output_parallel)
349
        else:
hwijeen's avatar
hwijeen committed
350
            output = output_parallel
351
352
        output_bias = self.bias if self.skip_bias_add else None
        return output, output_bias
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379


class RowParallelLinear(torch.nn.Module):
    """Linear layer with row parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its first dimension and X along its second dimension as:
               -   -
              | A_1 |
              | .   |
          A = | .   |        X = [X_1, ..., X_p]
              | .   |
              | A_p |
               -   -
    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias. Note that bias is not parallelized.
        input_is_parallel: If true, we assume that the input is already
                           split across the GPUs and we do not split
                           again.
        init_method: method to initialize weights. Note that bias is always set
                     to zero.
        stride: For the strided linear layers.
        keep_master_weight_for_test: This was added for testing and should be
                                     set to False. It returns the master weights
                                     used for initialization.
hwijeen's avatar
hwijeen committed
380
381
        skip_bias_add: This was added to enable performance optimization where bias
                       can be fused with other elementwise operations. We skip
382
                       adding bias but instead return it.
383
    """
Neel Kant's avatar
Neel Kant committed
384

385
386
387
    def __init__(self, input_size, output_size, bias=True,
                 input_is_parallel=False,
                 init_method=init.xavier_normal_, stride=1,
388
389
                 keep_master_weight_for_test=False,
                 skip_bias_add=False):
390
391
392
393
394
395
396
        super(RowParallelLinear, self).__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.input_is_parallel = input_is_parallel
        # Divide the weight matrix along the last dimension.
397
        world_size = get_tensor_model_parallel_world_size()
398
        self.input_size_per_partition = divide(input_size, world_size)
399
        self.skip_bias_add = skip_bias_add
400
401
402
403

        # Parameters.
        # Note: torch.nn.functional.linear performs XA^T + b and as a result
        # we allocate the transpose.
404
405
        # Initialize weight.
        args = get_args()
406
        if args.use_cpu_initialization:
407
408
409
410
411
412
413
414
415
416
417
418
419
            self.weight = Parameter(torch.empty(self.output_size,
                                                self.input_size_per_partition,
                                                dtype=args.params_dtype))
            self.master_weight = _initialize_affine_weight_cpu(
                self.weight, self.output_size, self.input_size,
                self.input_size_per_partition, 1, init_method,
                stride=stride, return_master_weight=keep_master_weight_for_test)
        else:
            self.weight = Parameter(torch.empty(
                self.output_size, self.input_size_per_partition,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            _initialize_affine_weight_gpu(self.weight, init_method,
                                          partition_dim=1, stride=stride)
420
        if bias:
421
            if args.use_cpu_initialization:
422
423
424
425
426
427
                self.bias = Parameter(torch.empty(self.output_size,
                                                  dtype=args.params_dtype))
            else:
                self.bias = Parameter(torch.empty(
                    self.output_size, device=torch.cuda.current_device(),
                    dtype=args.params_dtype))
428
429
430
431
432
            # Always initialize bias to zero.
            with torch.no_grad():
                self.bias.zero_()
        else:
            self.register_parameter('bias', None)
Sangkug Lym's avatar
Sangkug Lym committed
433
434
435
        self.gradient_accumulation_fusion = args.gradient_accumulation_fusion
        setattr(self.weight, 'fuse_gradient_accumulation',
                self.gradient_accumulation_fusion)
436

437
438
439
440
441
442

    def forward(self, input_):
        # Set up backprop all-reduce.
        if self.input_is_parallel:
            input_parallel = input_
        else:
443
            input_parallel = scatter_to_tensor_model_parallel_region(input_)
444
        # Matrix multiply.
Sangkug Lym's avatar
Sangkug Lym committed
445
446
447
        output_parallel = LinearWithGradAccumulationAndAsyncAllreduce.apply(
            input_parallel, self.weight, None,
            self.gradient_accumulation_fusion, None)
448
        # All-reduce across all the partitions.
449
        output_ = reduce_from_tensor_model_parallel_region(output_parallel)
450
451
452
        if not self.skip_bias_add:
            output = output_ + self.bias if self.bias is not None else output_
            output_bias = None
453
454
        else:
            output = output_
455
456
457
            output_bias = self.bias
        return output, output_bias