tokenizer.py 3.92 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16
17
18
19
20

"""Megatron tokenizer."""

from abc import ABC
from abc import abstractmethod

Mohammad's avatar
Mohammad committed
21
from megatron.arguments import get_args
22
23
24
from .bert_tokenization import FullTokenizer as FullBertTokenizer


Mohammad's avatar
Mohammad committed
25
26
27
28
29
30
31
32
33
def build_tokenizer():
    """Initialize tokenizer."""

    # Retrieve args.
    args = get_args()

    if args.rank == 0:
        print('building {} tokenizer ...'.format(args.tokenizer_type),
              flush=True)
34
35

    # Select and instantiate the tokenizer.
Mohammad's avatar
Mohammad committed
36
37
38
    if args.tokenizer_type == 'BertWordPieceLowerCase':
        tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file,
                                                    lower_case=True)
39
40
    else:
        raise NotImplementedError('{} tokenizer is not '
Mohammad's avatar
Mohammad committed
41
                                  'implemented.'.format(args.tokenizer_type))
42
43

    # Add vocab size.
Mohammad's avatar
Mohammad committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size)

    return tokenizer


def _vocab_size_with_padding(orig_vocab_size):
    """Pad vocab size so it is divisible by model parallel size and
    still having GPU friendly size."""

    args = get_args()
    after = orig_vocab_size
    multiple = args.make_vocab_size_divisible_by * \
               args.model_parallel_size
    while (after % multiple) != 0:
        after += 1
    if args.rank == 0:
        print(' > padded vocab (size: {}) with {} dummy tokens '
              '(new size: {})'.format(
                  orig_vocab_size, after - orig_vocab_size, after), flush=True)
    return after
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136


class AbstractTokenizer(ABC):
    """Abstract class for tokenizer."""

    def __init__(self, name):
        self.name = name
        super().__init__()

    @property
    @abstractmethod
    def vocab_size(self):
        pass

    @abstractmethod
    def tokenize(self, text):
        pass

    @property
    def cls(self):
        raise NotImplementedError('CLS is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def sep(self):
        raise NotImplementedError('SEP is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def pad(self):
        raise NotImplementedError('PAD is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def eod(self):
        raise NotImplementedError('EOD is not provided for {} '
                                  'tokenizer'.format(self.name))



class _BertWordPieceTokenizer(AbstractTokenizer):
    """Original BERT wordpiece tokenizer."""

    def __init__(self, vocab_file, lower_case=True):
        if lower_case:
            name = 'BERT Lower Case'
        else:
            name = 'BERT Upper Case'
        super().__init__(name)
        self.tokenizer = FullBertTokenizer(vocab_file, do_lower_case=lower_case)
        self.cls_id = self.tokenizer.vocab['[CLS]']
        self.sep_id = self.tokenizer.vocab['[SEP]']
        self.pad_id = self.tokenizer.vocab['[PAD]']

    @property
    def vocab_size(self):
        return self.tokenizer.vocab_size()

    def tokenize(self, text):
        text_tokens = self.tokenizer.tokenize(text)
        return self.tokenizer.convert_tokens_to_ids(text_tokens)

    @property
    def cls(self):
        return self.cls_id

    @property
    def sep(self):
        return self.sep_id

    @property
    def pad(self):
        return self.pad_id