merge_mp_partitions.py 11.8 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Mohammad's avatar
Mohammad committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Merge model parallel partitions."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
17
18

import os
Mohammad's avatar
Mohammad committed
19
20
21
22
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
                                             os.path.pardir)))

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
23
24
25
import torch

from megatron import mpu
Jared Casper's avatar
Jared Casper committed
26
from megatron.checkpointing import load_checkpoint, save_checkpoint
Mohammad's avatar
Mohammad committed
27
28
from megatron.checkpointing import ensure_directory_exists
from megatron.checkpointing import get_checkpoint_name
Jared Casper's avatar
Jared Casper committed
29
from megatron.checkpointing import get_checkpoint_version
Mohammad's avatar
Mohammad committed
30
from megatron.checkpointing import get_checkpoint_tracker_filename
Jared Casper's avatar
Jared Casper committed
31
from megatron.global_vars import set_global_variables, get_args
Mohammad's avatar
Mohammad committed
32
from megatron.global_vars import rebuild_tokenizer
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108


def split_into_partitions(tensor, num_partitions, partition_dim, stride):

    per_partition_size = mpu.utils.divide(tensor.size(partition_dim),
                                          num_partitions)
    per_partition_per_stride_size = mpu.utils.divide(per_partition_size, stride)

    partitions_list = torch.split(tensor,
                                  per_partition_per_stride_size,
                                  dim=partition_dim)

    partitions = []
    for i in range(num_partitions):
        partition = torch.cat(partitions_list[i::num_partitions],
                              dim=partition_dim)
        partitions.append(partition)

    return partitions


def merge_partitions(merged, partitions, partition_dim, stride):

    # Number and size of each partition.
    num_partitions = len(partitions)
    per_partition_size = None
    for partition in partitions:
        if per_partition_size is None:
            per_partition_size = partition.size(partition_dim)
        else:
            assert per_partition_size == partition.size(partition_dim)

    def concat_partitions(partitions_):
        with torch.no_grad():
            if (per_partition_size * num_partitions) == merged.size(
                    partition_dim):
                torch.cat(partitions_, dim=partition_dim, out=merged)
            else:
                print('     ***WARNING*** sizes do not match. Will cut '
                      'the merged partitions by {} along dimension {} '
                      'to reduce the size from {} to {} ...'.format(
                          (per_partition_size * num_partitions) - \
                          merged.size(partition_dim), partition_dim,
                          per_partition_size * num_partitions,
                          merged.size(partition_dim)))
                merged_ = torch.cat(partitions_, dim=partition_dim)
                merged_split = torch.split(merged_, merged.size(partition_dim),
                                           dim=partition_dim)
                merged_ = merged_split[0]
                assert merged_.size(partition_dim) == merged.size(partition_dim)
                merged.data.copy_(merged_.data)

    # If stride is 1, then do simple concatination.
    if stride == 1:
        concat_partitions(partitions)
        return

    # For none unity strides, first split based on stride and then group.
    per_partition_per_stride_size = mpu.utils.divide(per_partition_size, stride)
    # Chunk and build a list.
    chunks = None
    for i, partition in enumerate(partitions):
        chunk = torch.split(partition,
                            per_partition_per_stride_size,
                            dim=partition_dim)

        if chunks is None:
            chunks = [0]*(num_partitions*len(chunk))
        chunks[i::num_partitions] = chunk

    # Concatinate.
    concat_partitions(chunks)

    return


Mohammad's avatar
Mohammad committed
109
def get_model(model_type):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
110
111

    if model_type == 'BERT':
Mohammad's avatar
Mohammad committed
112
        from pretrain_bert import model_provider
113
114
    elif model_type == 'GPT':
        from pretrain_gpt import model_provider
Mohammad's avatar
Mohammad committed
115
116
117
118
119
120
121
122
123
    elif model_type == 'RACE':
        from tasks.race.finetune import model_provider
    elif model_type == ['MNLI', 'QQP']:
        num_classes = 2
        if model_type == 'MNLI':
            num_classes = 3
        from megatron.model.classification import Classification
        def model_provider():
            return Classification(num_classes=num_classes, num_tokentypes=2)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
124
125
126
    else:
        raise Exception('unrecognized model type: {}'.format(model_type))

Mohammad's avatar
Mohammad committed
127
    model = model_provider()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    model = model.half()

    return model


def get_parallel_checkpoint_name(path):

    tracker_filename = get_checkpoint_tracker_filename(path)
    iteration = 0
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        iteration = int(metastring)
    assert iteration > 0
    checkpoint_name = get_checkpoint_name(path, iteration)

    return checkpoint_name, iteration


def test_split_merge():

    print('testing split and merge ...')

    #[QKV.ROW-COL]
    tensor = torch.FloatTensor([[1.11, 1.12, 1.13, 1.14, 1.15],
                                [1.21, 1.22, 1.23, 1.24, 1.25],
                                [1.31, 1.32, 1.33, 1.34, 1.35],
                                [1.41, 1.42, 1.43, 1.44, 1.45],
                                [2.11, 2.12, 2.13, 2.14, 2.15],
                                [2.21, 2.22, 2.23, 2.24, 2.25],
                                [2.31, 2.32, 2.33, 2.34, 2.35],
                                [2.41, 2.42, 2.43, 2.44, 2.45],
                                [3.11, 3.12, 3.13, 3.14, 3.15],
                                [3.21, 3.22, 3.23, 3.24, 3.25],
                                [3.31, 3.32, 3.33, 3.34, 3.35],
                                [3.41, 3.42, 3.43, 3.44, 3.45]])

    num_partitions = 2
    partition_dim = 0
    stride = 3
    partitions = split_into_partitions(tensor, num_partitions,
                                       partition_dim, stride)

    merged = torch.zeros_like(tensor)
    merge_partitions(merged, partitions, partition_dim, stride)

    max_error = (merged - tensor).abs().max()
    print('  > max error (should be zero): {}'.format(max_error))


Mohammad's avatar
Mohammad committed
177
178
179
180
181
def get_mp_merge_args(parser):
    """Provide extra arguments required for merging."""
    group = parser.add_argument_group(title='mp merge')

    group.add_argument('--model-type', type=str, required=True,
182
                       choices=['BERT', 'GPT', 'RACE', 'MNLI', 'QQP'],
Mohammad's avatar
Mohammad committed
183
184
185
186
187
188
                       help='Type of the mdoel.')

    return parser


def main():
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
189

Jared Casper's avatar
Jared Casper committed
190
191
192
193
    # Arguments do sanity checks on the world size, but we don't care,
    # so trick it into thinking we are plenty of processes
    os.environ["WORLD_SIZE"] = f'{2**31}'

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
194
    # Args
Jared Casper's avatar
Jared Casper committed
195
196
197
198
199
200
201
    set_global_variables(extra_args_provider=get_mp_merge_args,
                         args_defaults = {'use_cpu_initialization': True,
                                          'micro_batch_size': 1,
                                          'no_load_optim': True,
                                          'no_load_rng': True,
                                          'save_interval': 1})
    args = get_args()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
202

Jared Casper's avatar
Jared Casper committed
203
204
205
206
    if args.pipeline_model_parallel_size > 1:
        print("Checkpoints with pipeline model parallelism are not currently supported.")
        exit()

207
208
209
210
211
    model_type = args.model_type
    orig_tensor_model_parallel_size = args.tensor_model_parallel_size
    args.tensor_model_parallel_size = 1
    tokenizer = rebuild_tokenizer(args)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
212
    print('\n merging model parallel partitions ...')
213
    print(' > number of partitions: {}'.format(orig_tensor_model_parallel_size))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
214
215
    print(' > checkpoint path: {}'.format(args.load))
    print(' > model parameters:')
Mohammad's avatar
Mohammad committed
216
217
    print('    number of tokens ................ {} '.format(
        tokenizer.vocab_size))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
218
    print('    number of layers ................ {}'.format(args.num_layers))
219
    print('    hidden size ..................... {}'.format(args.hidden_size))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
220
221
222
223
224
225
226
    print('    number of attention heads ....... {}'.format(
        args.num_attention_heads))
    print('    maximum position embeddings ..... {}'.format(
        args.max_position_embeddings))

    # Full model.
    print('> building the full model ...')
227
228
    mpu.initialize.set_tensor_model_parallel_world_size(1)
    mpu.initialize.set_tensor_model_parallel_rank(0)
Jared Casper's avatar
Jared Casper committed
229
230
    mpu.initialize.set_pipeline_model_parallel_world_size(1)
    mpu.initialize.set_pipeline_model_parallel_rank(0)
Mohammad's avatar
Mohammad committed
231
    merged_model = get_model(model_type)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
232
233
234
235

    # Build and load partitions.
    partitions = []
    iteration = 0
236
    args.tensor_model_parallel_size = orig_tensor_model_parallel_size
Mohammad's avatar
Mohammad committed
237
    tokenizer = rebuild_tokenizer(args)
238
239
240
    mpu.initialize.set_tensor_model_parallel_world_size(args.tensor_model_parallel_size)
    for rank in range(args.tensor_model_parallel_size):
        mpu.initialize.set_tensor_model_parallel_rank(rank)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
241
        checkpoint_name, iteration = get_parallel_checkpoint_name(args.load)
Mohammad's avatar
Mohammad committed
242
        model_ = get_model(model_type)
Jared Casper's avatar
Jared Casper committed
243
244
245
246
247
248
249
        print(f'> loading {checkpoint_name} ...')
        load_checkpoint(model_, None, None)
        print(f'> checkpoint version {get_checkpoint_version()}')
        if get_checkpoint_version() < 2.0:
            # Need to deal with the qkv matrix order of old versions
            print("Checkpoints less than version 2.0 are not currently supported.")
            exit()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        partitions.append(model_)

    # Parameter generators so we can loop through them semiltaneouly.
    merged_params_gen = merged_model.named_parameters()
    partitions_params_gen = [partition.named_parameters()
                             for partition in partitions]
    while True:
        try:

            # Get the params and check names.
            name, merged_param = next(merged_params_gen)
            print(' > working on {} ...'.format(name))
            print('     merged         type: {}, size: {}'.format(
                merged_param.dtype, list(merged_param.size())))
            partitions_param = []
            for rank, partition_params_gen in enumerate(partitions_params_gen):
                partition_name, partition_param = next(partition_params_gen)
                assert partition_name == name
                partitions_param.append(partition_param)
                print('     partition {}    type: {}, size: {}'.format(
                    rank, partition_param.dtype, list(partition_param.size())))

            # For the non-parallel parameters, simply copy the rank 0 values.
273
            if not hasattr(merged_param, 'tensor_model_parallel'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
274
275
276
277
278
                print('     none-parallel parameter, simple copy from rank 0')
                with torch.no_grad():
                    merged_param.data.copy_(partitions_param[0].data)
            # For parallel parameters, merge the values
            else:
Jared Casper's avatar
Jared Casper committed
279
280
281
282
                dim = merged_param.partition_dim
                stride = merged_param.partition_stride
                print(f'     parallel parameter merge with stride {stride} along '
                      f'dimention {dim}')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
283
284
                merge_partitions(merged_param,
                                 partitions_param,
Jared Casper's avatar
Jared Casper committed
285
286
                                 dim,
                                 stride)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
287
288
289
290
291

        except StopIteration:
            break

    # Save the model.
292
    args.tensor_model_parallel_size = 1
Jared Casper's avatar
Jared Casper committed
293
294
295
    args.pipeline_model_parallel_size = 1
    # And now one last time so proper arguments are set in saved checkpoint
    tokenizer = rebuild_tokenizer(args)
296
    mpu.initialize.set_tensor_model_parallel_rank(0)
Jared Casper's avatar
Jared Casper committed
297
298
    print('> saving merged model')
    save_checkpoint(iteration, merged_model, None, None)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
299
300
301
302
303
304

    print('done :-)')


if __name__ == '__main__':

Mohammad's avatar
Mohammad committed
305
    main()