main.py 9.11 KB
Newer Older
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.

"""Preprocess data for Retro.

Stages (see argument '--retro-tasks'):
- Build chunk database (DB).
- Build index (train, add).
- Query pretraining neighbors.
"""

import json
import os
import torch

from megatron import get_args, initialize_megatron, print_rank_0
from megatron.global_vars import set_retro_args
from tools.retro.db import build_db
from tools.retro.index.build import add_to_index, build_index, train_index
from tools.retro.pretraining.query import query_pretraining_neighbors
from tools.retro.utils import get_args_path


def add_retro_args(parser):
    """Retro preprocesing arguments.

    *Note* : Arguments prefixed with '--retro-gpt-*' or '--retro-bert-*' are
    included and named as such to more easily handle managing both models
    running at the same time. Megatron is not optimized to run two models at
    once, so this naming convention makes it clearer.
    """

    group = parser.add_argument_group(title="Retro preprocessing.")

    group.add_argument("--retro-gpt-vocab-file", required=True,
                       help="GPT vocab file.")
    group.add_argument("--retro-gpt-merge-file", required=True,
                       help="GPT merge file.")
    group.add_argument("--retro-gpt-tokenizer-type", required=True,
                       help="GPT tokenizer type.")
    group.add_argument("--retro-gpt-seq-length", type=int, default=2048,
                       help="GPT sequence length.")
    group.add_argument("--retro-gpt-chunk-length", type=int, default=64,
                       help="GPT chunk length.")
    group.add_argument("--retro-bert-vocab-file", required=True,
                       help="Bert vocab file.")
    group.add_argument("--retro-bert-tokenizer-type", required=True,
                       help="Bert tokenizer type (for when using "
                       "'--bert-embedder-type megatron').")
    group.add_argument("--retro-bert-batch-size", type=int, default=128,
                       help="Micro-batch size for processing Bert embeddings.")
    group.add_argument("--retro-bert-max-chunk-length", type=int, default=256,
                       help="Maximum sequence length for Bert embeddings. "
                       "(Named 'chunk' here in reference to these Bert "
                       "sequences being converted from GPT chunks.)")
    group.add_argument("--retro-tasks", default="build",
                       help="Comma-separated list of tasks to run. Run entire "
                       "preprocesing pipeline by using '--retro-tasks build'. "
                       "Alternatively, run individual stages with tasks (in "
                       "this order) 'db-build', 'index-build', or "
                       "'pretraining-query-neighbors'. For example, "
                       "'--retro-tasks db-build,index-build,"
                       "pretraining-query-neighbors' is equivalent to "
                       "'--retro-tasks build'; or the argument can contain "
                       "a subset of these tasks. Stages must always be run "
                       "in the correct order (listed above).")
    group.add_argument("--retro-index-nfeats", "-f", type=int, default=1024,
                       help="Dimension of Bert embeddings. Bert-large is "
                       "commonly used, so this value defaults to 1024.")
    group.add_argument("--retro-index-type", default="faiss-par-add",
                       choices=["faiss-base", "faiss-par-add"],
                       help="A 'faiss-base' index is a simple, un-optimized "
                       "wrapper around a Faiss index. A 'faiss-par-add' index "
                       "optimizes the 'add()' method by making it multi-node "
                       "and multi-process, but with bit-wise equivalent "
                       "results.")
    group.add_argument("--retro-index-str", required=True,
                       help="Index string used for calling "
                       "faiss.index_factory(). For example, "
                       "'IVF262144_HNSW32,Flat' or "
                       "'OPQ32_256,IVF4194304_HNSW32,PQ32'.")
    group.add_argument("--retro-ef-search", type=int, default=256,
                       help="Index ef-search parameter for HNSW during "
                       "querying.")
    group.add_argument("--retro-nprobe", type=int, default=65536,
                       help="Index nprobe parameter for IVF during "
                       "querying.")
    group.add_argument("--retro-nchunks-sampled", type=int, required=True,
                       help="Number of database chunks to use for training "
                       "the index. This value must be less or equal to the "
                       "total number of chunks in the database.")
    group.add_argument("--retro-doc-block-size", type=int, default=100000,
                       help="Number of documents to processe at time when "
                       "processing token datasets into chunk databases. The "
                       "partial chunk database for each block is saved into "
                       "a separate file.")
    group.add_argument("--retro-block-size", type=int, default=100000,
                       help="Number of chunks to process at a time when "
                       "generating Bert embeddings and querying the search "
                       "index. Partial results for each block are generally "
                       "saved to disk in separate files.")
    group.add_argument("--retro-index-train-block-size",
                       type=int, default=3750000,
                       help="As a memory fragmentation optimization, when "
                       "loading training data for training the search index, "
                       "enough data blocks loaded at a time until they reach "
                       "retro_index_train_block_size, and then this "
                       "data block is copied into the full training data "
                       "array.")
    group.add_argument("--retro-index-train-load-fraction",
                       type=float, default=1.,
                       help="Fraction of sampled chunks to use for training "
                       "the index. Useful when our total sampled embeddings "
                       "use too much memory; lowering the load fraction is "
                       "less costly than re-embedding a new sampled dataset "
                       "from scratch.")
    group.add_argument("--retro-num-neighbors-query", type=int, default=2000,
                       help="Number of neighbors to retrieve when calling "
                       "index.search().")
    group.add_argument("--retro-num-neighbors-target", type=int, default=200,
                       help="Number of neighbors to save to disk after "
                       "the index's returned neighbors. If longer than target "
                       "value, neighbors truncated; and if shorter than target "
                       "value, neighbors are padded with -1's.")
    group.add_argument("--retro-no-delete-index-training-embeddings",
                       action='store_false',
                       dest="retro_delete_index_training_embeddings",
                       help="Skip deleting training embeddings for the search "
                       "index. Useful for debugging.")

    # Enforce argument naming convention.
    for action in group._group_actions:
        prefix = action.dest.split("_")[0]
        assert prefix == "retro", \
            "Retro args must be prefixed with '--retro-*', for consistent " \
            "styling. Please fix '%s'." % ", ".join(action.option_strings)

    return parser


def save_args(args):
    '''Save copy of args within retro workdir.'''

    if torch.distributed.get_rank() == 0:
        args_path = get_args_path(args.retro_workdir)
        with open(args_path, "w") as f:
            json.dump(vars(args), f, indent=4, default=lambda o : "<skipped>")

    torch.distributed.barrier()


if __name__ == "__main__":

    # Initalize Megatron.
    initialize_megatron(extra_args_provider=add_retro_args)

    # Split retro tasks.
    args = get_args()
    args.retro_tasks = args.retro_tasks.split(",")

    # Save/set retro args.
    os.makedirs(args.retro_workdir, exist_ok=True)
    save_args(args)
    set_retro_args(args)

    # Select task to run.
    for task in args.retro_tasks:

        print_rank_0("start '%s'." % task)

        # Run all stages.
        if task == "build":
            build_db()
            torch.distributed.barrier()
            build_index()
            torch.distributed.barrier()
            query_pretraining_neighbors()

        # DB (i.e., chunk db).
        elif task == "db-build":
            build_db()

        # Index.
        elif task == "index-build":
            build_index() # calls both train + add.
        elif task == "index-train":
            train_index() # train only
        elif task == "index-add":
            add_to_index() # add only

        # Pretraining.
        elif task == "pretraining-query-neighbors":
            query_pretraining_neighbors()

        else:
            raise Exception("specialize for task '%s'." % task)

        torch.distributed.barrier()

        print_rank_0("end '%s'." % task)