dialog_dataset.py 4.63 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

"""Build Dataset for Controllable Coversational Model"""

import os
import torch
import numpy as np

from megatron import get_tokenizer

def read_data(tokenizer, data_path, train_module):
    """read and tokenize dialog data"""

    data_list = []
    with open(data_path, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            splits = line.split("\t")
            length_split = len(splits)
            assert length_split == 2 or length_split == 3 or length_split == 4

            if train_module == "dialog":
                dialog_context = splits[0]
                response = splits[-1]
                # only take the last three turns in the dialog context
                turns = dialog_context.split(" [SEP] ")
                turns = turns[-3:]
                context = " [SEP] ".join(turns)

                input_ids = tokenizer.tokenize(context)
                output_ids = tokenizer.tokenize(response)
                data_list.append({"input_ids": input_ids, "output_ids": output_ids})

            elif train_module == "control":
                if length_split == 2:
                    continue
                dialog_context = splits[0]
                ctrl_sent = splits[-2]
                ctrl_code = splits[1] if length_split == 4 else None

                turns = dialog_context.split(" [SEP] ")
                last_turn = turns[-1]
                
                if ctrl_code:
                    inputs = last_turn + " [CTRL] " + ctrl_code
                else:
                    inputs = last_turn
                outputs = ctrl_sent

                input_ids = tokenizer.tokenize(inputs)
                output_ids = tokenizer.tokenize(outputs)
                data_list.append({"input_ids": input_ids, "output_ids": output_ids})

            else:
                raise ValueError("Please input a correct train-module name! (either dialog or cnotrol))")
    
    return data_list


def data_shuffle(data, seed):
    # set random seed to make the shuffling reproducible
    np.random.seed(seed)
    np.random.shuffle(data)
    return data


class ControlDialogDataset(torch.utils.data.Dataset):

    def __init__(self, data, max_seq_len, pad_id, eod_id):
        # need to deal with padding, label masking
        self.data = data
        self.max_seq_len
        self.pad_id = pad_id
        self.eod_id = eod_id

    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        data_dict = self.data[idx]
        input_ids, output_ids = data_dict["input_ids"], data_dict["output_ids"]
        
        assert len(input_ids) < self.max_seq_len, "Set a larger max_seq_len!"

        # length_of_loss_mask == length_of_text - 1
        text = input_ids + [self.pad_id] + output_ids + [self.eod_id]
        loss_mask = [0]*len(input_ids) + [1]*(len(output_ids)+1)

        text_len = len(text)
        if text_len > self.max_seq_len:
            text = text[:self.max_seq_len]
            loss_mask = loss_mask[:self.max_seq_len-1]
        else:
            text += [self.pad_id] * (self.max_seq_len - text_len)
            loss_mask += [0] * (self.max_seq_len - text_len)

        return {"text": np.array(text, dtype=np.int64), "loss_mask": np.array(loss_mask, dtype=np.int64)}


def build_train_valid_test_datasets(data_folder, dataset_name, train_module, max_seq_len, seed):
    """Build train, valid, and test datasets."""

    dataname_dict = {"wizard_of_wikipedia": {"train": "train_entity_based_control.txt", "valid": "valid_random_split_entity_based_control.txt", "test": "test_random_split_entity_based_control.txt"}}
    
    train_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["train"])
    valid_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["valid"])
    test_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["test"])

    tokenizer = get_tokenizer()
    train_data_list = read_data(tokenizer, train_data_path, train_module)
    valid_data_list = read_data(tokenizer, valid_data_path, train_module)
    test_data_list = read_data(tokenizer, test_data_path, train_module)

    # shuffle the training data
    train_data_list = data_shuffle(train_data_list, seed)

    # build train, valid, and test datasets
    train_dataset = ControlDialogDataset(train_data_list, max_seq_len, tokenizer.pad_id, tokenizer.eod_id)
    valid_dataset = ControlDialogDataset(valid_data_list, max_seq_len, tokenizer.pad_id, tokenizer.eod_id)
    test_dataset = ControlDialogDataset(test_data_list, max_seq_len, tokenizer.pad_id, tokenizer.eod_id)

    return (train_dataset, valid_dataset, test_dataset)