indexer.py 7.64 KB
Newer Older
1
2
3
import os
import time

Neel Kant's avatar
Neel Kant committed
4
5
6
7
8
9
10
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

from megatron import get_args
from megatron import mpu
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.data.bert_dataset import get_indexed_dataset_
11
from megatron.data.realm_dataset import ICTDataset
12
from megatron.data.realm_index import detach, BlockData, RandProjectionLSHIndex
Neel Kant's avatar
Neel Kant committed
13
14
from megatron.data.samplers import DistributedBatchSampler
from megatron.initialize import initialize_megatron
Neel Kant's avatar
Neel Kant committed
15
from megatron.model import REALMRetriever
Neel Kant's avatar
Neel Kant committed
16
17
from megatron.training import get_model
from pretrain_bert_ict import get_batch, model_provider
Neel Kant's avatar
Neel Kant committed
18
from indexer_utils import set_index_com_file_ready, set_model_com_file_not_ready, check_model_com_file_ready
Neel Kant's avatar
Neel Kant committed
19
20


Neel Kant's avatar
Neel Kant committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# TODO re: main()
# consider broadcasting/all-reducing all in memory rather than using the filesystem
# create a different process group in the same nccl world - don't have to use chkpts on disc or transfer things on disc
# torch distributed new group, constains a list of rank, gives back a group which I can hand to the collective operations
# create a training process group, indexing process group
# pass the training group to the distributed DDP, instead of the large world process group
# use indexing process group for the shard-combining
# communication group between process "8" and process "0" which tells training group that there's a new index
# also, process 0 sends process 8 the new model

# if i want to launch a separate process for indexing, may have to work with environment variables to
# allocate the resources well. Have to subsequently assign the correct gpus to the indexing job
# consider initializing everything in a single group and break off processes based on the ranks

# for debugging purposes, make it so that the training process group checks every some number of intervals
# and if it isn't ready, then wait so that it's consistent. Start with using the filesystem

Neel Kant's avatar
Neel Kant committed
38
def test_retriever():
39
    # TODO: Update this because it's outdated and definitely won't run.
Neel Kant's avatar
Neel Kant committed
40
41
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
Neel Kant's avatar
Neel Kant committed
42
    args = get_args()
Neel Kant's avatar
Neel Kant committed
43
    model = load_ict_checkpoint(only_block_model=True)
Neel Kant's avatar
Neel Kant committed
44
    model.eval()
Neel Kant's avatar
Neel Kant committed
45
    dataset = get_ict_dataset()
Neel Kant's avatar
Neel Kant committed
46
47
48
49
50

    block_data = BlockData.load_from_file(args.block_data_path)
    mips_index = FaissMIPSIndex('flat_ip', 128)
    mips_index.add_block_embed_data(block_data)
    retriever = REALMRetriever(model, dataset, mips_index, top_k=5)
Neel Kant's avatar
Neel Kant committed
51
52
53
54
55
56
57
58
59
60

    strs = [
        "The last monarch from the house of windsor",
        "married to Elvis Presley",
        "tallest building in the world today",
        "who makes graphics cards"
    ]

    for s in strs:
        retriever.retrieve_evidence_blocks_text(s)
Neel Kant's avatar
Neel Kant committed
61
62


Neel Kant's avatar
Neel Kant committed
63
def main():
Neel Kant's avatar
Neel Kant committed
64
65
66
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
    args = get_args()
67
    ran_once = False
Neel Kant's avatar
Neel Kant committed
68
    while True:
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        model = load_ict_checkpoint(only_block_model=True, no_grad=True, from_realm_chkpt=ran_once)
        model.eval()
        dataset = get_ict_dataset()
        data_iter = iter(get_one_epoch_dataloader(dataset))
        all_block_data = BlockData()
        hashed_index = RandProjectionLSHIndex(embed_size=128, num_buckets=32, whiten=True)

        i = 1
        total = 0
        while True:
            with torch.no_grad():
                try:
                    query_tokens, query_pad_mask, \
                    block_tokens, block_pad_mask, block_index_data = get_batch(data_iter)
                except:
84
85
                    break

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
                block_index_data = detach(block_index_data)
                block_indices = block_index_data[:, 3]
                block_meta = block_index_data[:, :3]

                block_logits = detach(model(None, None, block_tokens, block_pad_mask, only_block=True))
                all_block_data.add_block_data(block_indices, block_logits, block_meta)

                total += block_indices.size
                i += 1
                if i % 20 == 0:
                    print('Batch {:10d} | Total {:10d}'.format(i, total), flush=True)
                    if args.debug:
                        break

        all_block_data.save_shard(args.rank)
        torch.distributed.barrier()
        del model

        if args.rank == 0:
            all_block_data.consolidate_shards_and_save()
            hashed_index.hash_whitened_block_embeds(all_block_data)
            hashed_index.save_to_file()
        else:
            all_block_data.clear()

        ran_once = True
        set_index_com_file_ready()
        torch.distributed.barrier()
        while not check_model_com_file_ready():
            time.sleep(5)

        set_model_com_file_not_ready()


def load_ict_checkpoint(only_query_model=False, only_block_model=False, no_grad=False, from_realm_chkpt=False):
Neel Kant's avatar
Neel Kant committed
121
    args = get_args()
Neel Kant's avatar
Neel Kant committed
122
    model = get_model(lambda: model_provider(only_query_model, only_block_model))
Neel Kant's avatar
Neel Kant committed
123

124
125
    load_path = args.load if from_realm_chkpt else args.ict_load

Neel Kant's avatar
Neel Kant committed
126
127
    if isinstance(model, torchDDP):
        model = model.module
128
    tracker_filename = get_checkpoint_tracker_filename(load_path)
Neel Kant's avatar
Neel Kant committed
129
130
131
132
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
133
    checkpoint_name = get_checkpoint_name(load_path, iteration, False)
Neel Kant's avatar
Neel Kant committed
134
135
136
137
138
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
139
140
141
142
    ict_state_dict = state_dict['model']
    if from_realm_chkpt:
        ict_state_dict = ict_state_dict['retriever']['ict_model']

Neel Kant's avatar
Neel Kant committed
143
    if only_query_model:
144
        ict_state_dict.pop('context_model')
Neel Kant's avatar
Neel Kant committed
145
    if only_block_model:
146
        ict_state_dict.pop('question_model')
Neel Kant's avatar
Neel Kant committed
147
148
    if no_grad:
        with torch.no_grad():
149
            model.load_state_dict(ict_state_dict)
Neel Kant's avatar
Neel Kant committed
150
    else:
151
        model.load_state_dict(ict_state_dict)
Neel Kant's avatar
Neel Kant committed
152
153
154
155
156
157
158
159
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


160
def get_ict_dataset(use_titles=True):
Neel Kant's avatar
Neel Kant committed
161
    args = get_args()
Neel Kant's avatar
Neel Kant committed
162
    block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
163
    titles_dataset = get_indexed_dataset_(args.titles_data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
164
165
166

    kwargs = dict(
        name='full',
Neel Kant's avatar
Neel Kant committed
167
168
        block_dataset=block_dataset,
        title_dataset=titles_dataset,
Neel Kant's avatar
Neel Kant committed
169
        data_prefix=args.data_path,
Neel Kant's avatar
Neel Kant committed
170
171
        num_epochs=1,
        max_num_samples=None,
Neel Kant's avatar
Neel Kant committed
172
173
        max_seq_length=288,  # doesn't matter
        short_seq_prob=0.0001,  # doesn't matter
174
        seed=1,
Neel Kant's avatar
Neel Kant committed
175
        query_in_block_prob=1,
176
        use_titles=use_titles
Neel Kant's avatar
Neel Kant committed
177
    )
178
    dataset = ICTDataset(**kwargs)
Neel Kant's avatar
Neel Kant committed
179
180
181
    return dataset


Neel Kant's avatar
Neel Kant committed
182
def get_one_epoch_dataloader(dataset):
Neel Kant's avatar
Neel Kant committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    global_batch_size = args.batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=True,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


if __name__ == "__main__":
Neel Kant's avatar
Neel Kant committed
204
    main()