"tests/vscode:/vscode.git/clone" did not exist on "f625fe1f8bfbbf393569f2e768087e4cca136c66"
preprocess_data.py 7.55 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Processing data for pretraining."""

18
19
20
import argparse
import json
import multiprocessing
Mohammad's avatar
Mohammad committed
21
import os
22
import sys
Mohammad's avatar
Mohammad committed
23
24
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
                                             os.path.pardir)))
25
26
27
28
29
30
31
32
33
34
35
36
import time

import torch
try:
    import nltk
    nltk_available = True
except ImportError:
    nltk_available = False

from megatron.tokenizer import build_tokenizer
from megatron.data import indexed_dataset

Mohammad's avatar
Mohammad committed
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# https://stackoverflow.com/questions/33139531/preserve-empty-lines-with-nltks-punkt-tokenizer
class CustomLanguageVars(nltk.tokenize.punkt.PunktLanguageVars):

    _period_context_fmt = r"""
        \S*                          # some word material
        %(SentEndChars)s             # a potential sentence ending
        \s*                       #  <-- THIS is what I changed
        (?=(?P<after_tok>
            %(NonWord)s              # either other punctuation
            |
            (?P<next_tok>\S+)     #  <-- Normally you would have \s+ here
        ))"""

class IdentitySplitter(object):
    def tokenize(self, *text):
        return text

class Encoder(object):
    def __init__(self, args):
        self.args = args

    def initializer(self):
        # Use Encoder class as a container for global data
        Encoder.tokenizer = build_tokenizer(self.args)
        if self.args.split_sentences:
            if not nltk_available:
                print("NLTK is not available to split sentences.")
                exit()
            splitter = nltk.load("tokenizers/punkt/english.pickle")
            if self.args.keep_newlines:
                # this prevents punkt from eating newlines after sentences
                Encoder.splitter = nltk.tokenize.punkt.PunktSentenceTokenizer(
                    train_text = splitter._params,
                    lang_vars = CustomLanguageVars())
            else:
                Encoder.splitter = splitter

        else:
            Encoder.splitter = IdentitySplitter()

    def encode(self, json_line):
        data = json.loads(json_line)
        ids = {}
        for key in self.args.json_keys:
            text = data[key]
            doc_ids = []
            for sentence in Encoder.splitter.tokenize(text):
                sentence_ids = Encoder.tokenizer.tokenize(sentence)
                if len(sentence_ids) > 0:
                    doc_ids.append(sentence_ids)
            if self.args.append_eod:
                doc_ids[-1].append(Encoder.tokenizer.eod)
            ids[key] = doc_ids
        return ids, len(json_line)

def get_args():
    parser = argparse.ArgumentParser()
    group = parser.add_argument_group(title='input data')
    group.add_argument('--input', type=str, required=True,
                       help='Path to input JSON')
    group.add_argument('--json-keys', nargs='+', default=['text'],
                       help='space separate listed of keys to extract from json')
    group.add_argument('--split-sentences', action='store_true',
                       help='Split documents into sentences.')
    group.add_argument('--keep-newlines', action='store_true',
                       help='Keep newlines between sentences when splitting.')

    group = parser.add_argument_group(title='tokenizer')
    group.add_argument('--tokenizer-type', type=str, required=True,
                       choices=['BertWordPieceLowerCase',
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
    group.add_argument('--vocab-file', type=str, default=None,
                       help='Path to the vocab file')
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file (if necessary).')
    group.add_argument('--append-eod', action='store_true',
                       help='Append an <eod> token to the end of a document.')


    group = parser.add_argument_group(title='output data')
    group.add_argument('--output-prefix', type=str, required=True,
                       help='Path to binary output file without suffix')
    group.add_argument('--dataset-impl', type=str, default='mmap',
                       choices=['lazy', 'cached', 'mmap'])

    group = parser.add_argument_group(title='runtime')
    group.add_argument('--workers', type=int, default=1,
                       help='Number of worker processes to launch')
    group.add_argument('--log-interval', type=int, default=100,
                       help='Interval between progress updates')
    args = parser.parse_args()
    args.keep_empty = False

    if args.tokenizer_type.lower().startswith('bert'):
        if not args.split_sentences:
            print("Bert tokenizer detected, are you sure you don't want to split sentences?")

    # some default/dummy values for the tokenizer
    args.rank = 0
    args.make_vocab_size_divisible_by = 128
    args.model_parallel_size = 1

    return args

def main():
    args = get_args()
    startup_start = time.time()

    print("Opening", args.input)
    fin = open(args.input, 'r', encoding='utf-8')

    if nltk_available and args.split_sentences:
        nltk.download("punkt", quiet=True)

    encoder = Encoder(args)
    tokenizer = build_tokenizer(args)
    pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
    encoded_docs = pool.imap(encoder.encode, fin, 25)
    #encoded_docs = map(encoder.encode, fin)

159
160
161
162
    level = "document"
    if args.split_sentences:
        level = "sentence"

163
164
165
166
167
168
    print(f"Vocab size: {tokenizer.vocab_size}")
    print(f"Output prefix: {args.output_prefix}")
    output_bin_files = {}
    output_idx_files = {}
    builders = {}
    for key in args.json_keys:
169
170
171
172
        output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix,
                                                      key, level)
        output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix,
                                                      key, level)
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        builders[key] = indexed_dataset.make_builder(output_bin_files[key],
                                               impl=args.dataset_impl,
                                               vocab_size=tokenizer.vocab_size)

    startup_end = time.time()
    proc_start = time.time()
    total_bytes_processed = 0
    print("Time to startup:", startup_end - startup_start)

    for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
        total_bytes_processed += bytes_processed
        for key, sentences in doc.items():
            for sentence in sentences:
                builders[key].add_item(torch.IntTensor(sentence))
            builders[key].end_document()
        if i % args.log_interval == 0:
            current = time.time()
            elapsed = current - proc_start
            mbs = total_bytes_processed/elapsed/1024/1024
            print(f"Processed {i} documents",
                  f"({i/elapsed} docs/s, {mbs} MB/s).",
                  file=sys.stderr)

    for key in args.json_keys:
        builders[key].finalize(output_idx_files[key])

if __name__ == '__main__':
    main()