"doc/en/xpu.md" did not exist on "333351c7c85760df23f5009b60c8b5b198f00d4c"
test_gpt_model.py 4.33 KB
Newer Older
silencealiang's avatar
silencealiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

import inspect
import os

import pytest
import torch

from megatron.core.models.gpt.gpt_layer_specs import (
    get_gpt_layer_with_transformer_engine_spec,
    get_mlp_module_spec,
)
from megatron.core.models.gpt.gpt_model import GPTModel
from megatron.core.tensor_parallel.random import model_parallel_cuda_manual_seed
from megatron.core.transformer.transformer_config import TransformerConfig
from tests.unit_tests.test_utilities import Utils


class TestGPTModel:

    def setup_method(self, method):
        os.environ.pop('NVTE_FUSED_ATTN', None)
        os.environ.pop('NVTE_FLASH_ATTN', None)
        os.environ.pop('NVTE_UNFUSED_ATTN', None)
        Utils.initialize_model_parallel(1, 1)
        model_parallel_cuda_manual_seed(123)
        transformer_config = TransformerConfig(
            num_layers=2, hidden_size=12, num_attention_heads=4, use_cpu_initialization=True
        )
        self.gpt_model = GPTModel(
            config=transformer_config,
            transformer_layer_spec=get_gpt_layer_with_transformer_engine_spec(),
            vocab_size=100,
            max_sequence_length=4,
        )

    def teardown_method(self, method):
        Utils.destroy_model_parallel()

    @pytest.mark.internal
    def test_constructor(self):
        assert isinstance(self.gpt_model, GPTModel)

        assert self.gpt_model.max_sequence_length == 4

        num_weights = sum([p.numel() for p in self.gpt_model.parameters()])
        assert num_weights == 6240

    @pytest.mark.internal
    def test_set_input_tensor(self):
        config: TransformerConfig = self.gpt_model.config
        sequence_length = self.gpt_model.max_sequence_length
        micro_batch_size = 2

        # [sequence length, batch size, hidden size]
        input_tensor = torch.ones((sequence_length, micro_batch_size, config.hidden_size))

        self.gpt_model.set_input_tensor(input_tensor)

        assert self.gpt_model.decoder.input_tensor.shape[0] == sequence_length
        assert self.gpt_model.decoder.input_tensor.shape[1] == micro_batch_size
        assert self.gpt_model.decoder.input_tensor.shape[2] == config.hidden_size

    @pytest.mark.internal
    def test_post_process_forward(self):
        _ = self.gpt_model.config
        sequence_length = self.gpt_model.max_sequence_length
        micro_batch_size = 2

        self.gpt_model.cuda()

        data = list(range(sequence_length))
        input_ids = torch.tensor(data, dtype=torch.int64).repeat((micro_batch_size, 1)).cuda()
        position_ids = torch.tensor(data, dtype=torch.int64).repeat((micro_batch_size, 1)).cuda()
        attention_mask = torch.ones(
            (micro_batch_size, 1, sequence_length, sequence_length), dtype=bool
        ).cuda()

        logits = self.gpt_model.forward(
            input_ids=input_ids, position_ids=position_ids, attention_mask=attention_mask
        )

        assert logits.shape[0] == micro_batch_size
        assert logits.shape[1] == sequence_length
        assert logits.shape[2] == self.gpt_model.vocab_size


def test_get_mlp_module_spec_interface():
    # Get the function signature
    sig = inspect.signature(get_mlp_module_spec)

    # Define the expected signature
    expected_params = {
        "use_te": inspect.Parameter.POSITIONAL_OR_KEYWORD,
        "num_experts": inspect.Parameter.POSITIONAL_OR_KEYWORD,
        "moe_grouped_gemm": inspect.Parameter.POSITIONAL_OR_KEYWORD,
        "fp8": inspect.Parameter.POSITIONAL_OR_KEYWORD,
        "moe_use_legacy_grouped_gemm": inspect.Parameter.POSITIONAL_OR_KEYWORD,
    }

    expected_defaults = {
        "use_te": True,
        "num_experts": None,
        "moe_grouped_gemm": False,
        "fp8": None,
        "moe_use_legacy_grouped_gemm": False,
    }

    # Check parameter kinds
    for param_name, param in sig.parameters.items():
        assert param_name in expected_params.keys(), f"Unexpected parameter: {param_name}"
        assert param.kind is expected_params[param_name], f"Wrong kind for parameter: {param_name}"

    # Check default values
    defaults = {
        k: v.default for k, v in sig.parameters.items() if v.default is not inspect.Parameter.empty
    }
    assert defaults == expected_defaults, "Default values do not match the expected ones."