"vscode:/vscode.git/clone" did not exist on "ae5e0f08893346ba9a61e86c0507b39b90d1ed38"
utils.py 8.75 KB
Newer Older
silencealiang's avatar
silencealiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from functools import partial
from typing import Any, Callable, Tuple, Union
from unittest import mock

import torch

from megatron.core.models.gpt import GPTModel
from megatron.core.models.gpt.gpt_layer_specs import (
    get_gpt_layer_local_spec,
    get_gpt_layer_with_transformer_engine_spec,
)
from megatron.core.optimizer import OptimizerConfig, get_megatron_optimizer
from megatron.core.tensor_parallel import model_parallel_cuda_manual_seed
from megatron.core.transformer import TransformerConfig
from megatron.training.arguments import parse_args
from megatron.training.training import get_model
from megatron.training.utils import unwrap_model

NUM_LAYERS = 8
HIDDEN_SIZE = 16
NUM_ATTENTION_HEADS = 8


def initialize_gpt_model(
    pre_process=True, post_process=True, seed=0, use_glu=True, **config_kwargs
):
    torch.manual_seed(seed)
    model_parallel_cuda_manual_seed(seed)

    default_config_kwargs = dict(
        num_layers=NUM_LAYERS,
        hidden_size=HIDDEN_SIZE,
        num_attention_heads=NUM_ATTENTION_HEADS,
        use_cpu_initialization=True,
    )
    default_config_kwargs.update(**config_kwargs)
    transformer_config = TransformerConfig(**default_config_kwargs, gated_linear_unit=use_glu)
    model = GPTModel(
        config=transformer_config,
        transformer_layer_spec=get_gpt_layer_local_spec(),
        vocab_size=128,
        max_sequence_length=4,
        pre_process=pre_process,
        post_process=post_process,
    )

    model.bfloat16()
    with torch.no_grad():
        for p in model.parameters():
            p.random_()
    return model


def initialize_moe_model(
    pre_process=True,
    post_process=True,
    seed=0,
    use_glu=True,
    use_sp=False,
    use_te=False,
    use_grouped_mlp=False,
    **config_kwargs,
):
    torch.manual_seed(seed)
    model_parallel_cuda_manual_seed(seed)
    expert_num = 8

    default_config_kwargs = dict(
        num_layers=8,
        hidden_size=16,
        num_attention_heads=8,
        use_cpu_initialization=True,
        num_moe_experts=expert_num,
        sequence_parallel=use_sp,
        moe_grouped_gemm=use_grouped_mlp,
        add_bias_linear=False,
    )
    default_config_kwargs.update(**config_kwargs)
    transformer_config = TransformerConfig(**default_config_kwargs, gated_linear_unit=use_glu)
    if use_te:
        spec = get_gpt_layer_with_transformer_engine_spec(
            num_experts=expert_num, moe_grouped_gemm=use_grouped_mlp
        )
    else:
        spec = get_gpt_layer_local_spec(num_experts=expert_num, moe_grouped_gemm=use_grouped_mlp)
    model = GPTModel(
        config=transformer_config,
        transformer_layer_spec=spec,
        vocab_size=128,
        max_sequence_length=4,
        pre_process=pre_process,
        post_process=post_process,
    )

    model.bfloat16()
    with torch.no_grad():
        for p in model.parameters():
            p.random_()
    return model


def init_basic_mock_args(args, tp, pp, bf16=True):
    args.data_parallel_random_init = False
    args.virtual_pipeline_model_parallel_size = None
    args.fp16 = False
    args.bf16 = bf16
    args.accumulate_allreduce_grads_in_fp32 = False
    args.overlap_grad_reduce = False
    args.overlap_param_gather_with_optimizer_step = False
    args.fp8_param_gather = False
    args.use_distributed_optimizer = True
    args.ddp_bucket_size = None
    args.check_for_nan_in_loss_and_grad = False
    args.ddp_average_in_collective = False
    args.tensor_model_parallel_size = tp
    args.pipeline_model_parallel_size = pp
    args.encoder_tensor_model_parallel_size = 0
    args.encoder_pipeline_model_parallel_size = 0
    args.enable_ft_package = False
    args.use_torch_fsdp2 = False
    args.init_model_with_meta_device = False
    return args


def init_checkpointing_mock_args(args, ckpt_dir, fully_parallel=False):
    args.non_persistent_global_ckpt_dir = None
    args.non_persistent_ckpt_type = None
    args.save = ckpt_dir
    args.load = ckpt_dir
    args.pretrained_checkpoint = None
    args.ckpt_fully_parallel_save = fully_parallel
    args.ckpt_fully_parallel_load = fully_parallel
    args.async_save = False
    args.use_dist_ckpt = True
    args.ckpt_format = 'torch_dist'
    args.no_save_optim = False
    args.no_save_rng = False
    args.ckpt_assume_constant_structure = False
    args.log_progress = False
    args.auto_detect_ckpt_format = False
    args.exit_on_missing_checkpoint = False
    args.finetune = False
    args.consumed_train_samples = 0
    args.skipped_train_samples = 0
    args.consumed_valid_samples = 0
    args.retro_add_retriever = False
    args.no_load_optim = False
    args.no_load_rng = False
    args.dist_ckpt_strictness = 'assume_ok_unexpected'
    args.add_position_embedding = True
    args.vocab_file = False
    args.num_layers = NUM_LAYERS
    args.hidden_size = HIDDEN_SIZE
    args.num_attention_heads = NUM_ATTENTION_HEADS


def setup_model_and_optimizer(
    seed,
    tp,
    pp,
    initialize_fn=initialize_gpt_model,
    bf16=True,
    dist_opt=True,
    use_custom_fsdp=False,
    data_parallel_sharding_strategy="optim_grads_params",
):
    mock_args = parse_args(ignore_unknown_args=True)
    with mock.patch('megatron.training.training.get_args', new=lambda: mock_args):
        init_basic_mock_args(mock_args, tp, pp, bf16=bf16)
        model = get_model(
            partial(
                initialize_fn,
                seed=seed,
                tensor_model_parallel_size=tp,
                pipeline_model_parallel_size=pp,
                pipeline_dtype=torch.bfloat16,
            )
        )

    config = OptimizerConfig(
        bf16=bf16,
        params_dtype=torch.bfloat16 if bf16 else torch.float,
        use_distributed_optimizer=dist_opt,
    )
    optimizer = get_megatron_optimizer(config, model)

    torch.manual_seed(seed + 1)
    model_parallel_cuda_manual_seed(seed + 1)

    for group in optimizer.optimizer.param_groups:
        for p in group['params']:
            if len(optimizer.optimizer.state[p]) == 0:
                optimizer.optimizer.state[p]['exp_avg'] = torch.rand_like(p.data)
                optimizer.optimizer.state[p]['exp_avg_sq'] = torch.rand_like(p.data)

    optimizer.reload_model_params()

    return unwrap_model(model), optimizer


def find_matching_values(
    x: Union[dict, list], predicate: Callable[[Any], bool]
) -> Tuple[Union[dict, list], Union[dict, list]]:
    """Return matching values in a single list

    Args:
        x (Union[dict, list]) : state dict to process. Top-level argument must be a dict or list
        predicate (object -> bool): determines matching values
    """

    matching_vals = []
    if hasattr(x, 'values') and callable(getattr(x, 'values')):
        values = x.values()
    elif isinstance(x, list):
        values = x
    else:
        raise ValueError(f'Unexpected top-level object type: {type(x)}')
    for v in values:
        if isinstance(v, (list, dict)):
            matching_vals += find_matching_values(v, predicate)
        elif predicate(v):
            matching_vals.append(v)
    return matching_vals


def setup_moe_model_and_optimizer(
    seed,
    tp,
    pp,
    ep,
    initialize_fn=initialize_moe_model,
    bf16=True,
    dist_opt=True,
    use_te=False,
    use_grouped_mlp=False,
    use_glu=False,
):
    mock_args = parse_args(ignore_unknown_args=True)
    with mock.patch('megatron.training.training.get_args', new=lambda: mock_args):
        init_basic_mock_args(mock_args, tp, pp, bf16=bf16)
        model = get_model(
            partial(
                initialize_fn,
                seed=seed,
                tensor_model_parallel_size=tp,
                pipeline_model_parallel_size=pp,
                pipeline_dtype=torch.bfloat16,
                expert_model_parallel_size=ep,
                use_sp=(tp > 1 and ep > 1),
                use_te=use_te,
                use_grouped_mlp=use_grouped_mlp,
                use_glu=use_glu,
            )
        )

    config = OptimizerConfig(
        bf16=bf16,
        params_dtype=torch.bfloat16 if bf16 else torch.float,
        use_distributed_optimizer=dist_opt,
    )
    optimizer = get_megatron_optimizer(config, model)

    torch.manual_seed(seed + 1)
    model_parallel_cuda_manual_seed(seed + 1)

    for opt in optimizer.chained_optimizers:
        for group in opt.param_groups:
            for p in group['params']:
                if len(opt.state[p]) == 0:
                    opt.state[p]['exp_avg'] = torch.rand_like(p.data)
                    opt.state[p]['exp_avg_sq'] = torch.rand_like(p.data)

    optimizer.reload_model_params()

    return unwrap_model(model), optimizer