attention.py 28.3 KB
Newer Older
silencealiang's avatar
silencealiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Tuple, Union

import torch
from torch import Tensor

from megatron.core import InferenceParams, parallel_state, tensor_parallel
from megatron.core.models.common.embeddings.rope_utils import (
    apply_rotary_pos_emb,
    apply_rotary_pos_emb_with_cos_sin,
)
from megatron.core.parallel_state import (
    get_data_parallel_group,
    get_data_parallel_rank,
    get_data_parallel_world_size,
    get_tensor_model_parallel_group,
    get_tensor_model_parallel_rank,
    get_tensor_model_parallel_world_size,
)
from megatron.core.transformer.module import MegatronModule
from megatron.core.transformer.spec_utils import ModuleSpec, build_module
from megatron.core.utils import divide

from .enums import AttnMaskType
from .transformer_config import TransformerConfig

try:
    from flash_attn import flash_attn_with_kvcache
except:
    flash_attn_with_kvcache = None


try:
    import transformer_engine  # pylint: disable=unused-import

    HAVE_TE = True
    from megatron.core.extensions.transformer_engine import SplitAlongDim
except ImportError:
    HAVE_TE = False
    SplitAlongDim = None


@dataclass
class SelfAttentionSubmodules:
    """
    Configuration class for specifying the submodules of a self-attention.
    """

    linear_qkv: Union[ModuleSpec, type] = None
    core_attention: Union[ModuleSpec, type] = None
    linear_proj: Union[ModuleSpec, type] = None
    q_layernorm: Union[ModuleSpec, type] = None
    k_layernorm: Union[ModuleSpec, type] = None


@dataclass
class CrossAttentionSubmodules:
    """
    Configuration class for specifying the submodules of a cross-attention.
    """

    linear_q: Union[ModuleSpec, type] = None
    linear_kv: Union[ModuleSpec, type] = None
    core_attention: Union[ModuleSpec, type] = None
    linear_proj: Union[ModuleSpec, type] = None


class Attention(MegatronModule, ABC):
    """Attention layer abstract class.

    This layer only contains common modules required for the "self attn" and
    "cross attn" specializations.
    """

    def __init__(
        self,
        config: TransformerConfig,
        submodules: Union[SelfAttentionSubmodules, CrossAttentionSubmodules],
        layer_number: int,
        attn_mask_type: AttnMaskType,
        attention_type: str,
        cp_comm_type: str = None,
    ):
        super().__init__(config=config)

        self.config = config
        self.layer_number = layer_number
        self.attn_mask_type = attn_mask_type
        self.attention_type = attention_type

        # For normal attention without groups, num_query_groups == num_attention_heads,
        # so these two will be the same
        self.query_projection_size = self.config.kv_channels * self.config.num_attention_heads
        self.kv_projection_size = self.config.kv_channels * self.config.num_query_groups

        # Per attention head and per partition values.
        world_size = parallel_state.get_tensor_model_parallel_world_size()
        self.hidden_size_per_attention_head = divide(
            self.query_projection_size, self.config.num_attention_heads
        )
        self.num_attention_heads_per_partition = divide(self.config.num_attention_heads, world_size)
        self.num_query_groups_per_partition = divide(self.config.num_query_groups, world_size)

        # To support both CUDA Graphs and key value with different hidden size
        self.key_hidden_size = self.hidden_size_per_attention_head
        self.val_hidden_size = self.hidden_size_per_attention_head

        self.core_attention = build_module(
            submodules.core_attention,
            config=self.config,
            layer_number=self.layer_number,
            attn_mask_type=self.attn_mask_type,
            attention_type=self.attention_type,
            cp_comm_type=cp_comm_type,
            softmax_scale=self.config.softmax_scale,
        )

        self.checkpoint_core_attention = self.config.recompute_granularity == 'selective'

        # Output.
        self.linear_proj = build_module(
            submodules.linear_proj,
            self.query_projection_size,
            self.config.hidden_size,
            config=self.config,
            init_method=self.config.output_layer_init_method,
            bias=self.config.add_bias_linear,
            input_is_parallel=True,
            skip_bias_add=True,
            is_expert=False,
            tp_comm_buffer_name='proj',
        )

    def _checkpointed_attention_forward(
        self,
        query,
        key,
        value,
        attention_mask,
        rotary_pos_emb=None,
        attn_mask_type=None,
        attention_bias=None,
        packed_seq_params=None,
    ):
        """Forward method with selective activation checkpointing."""

        def custom_forward(*inputs):
            query = inputs[0]
            key = inputs[1]
            value = inputs[2]
            attention_mask = inputs[3]
            attn_mask_type = inputs[5]
            attn_mask_type = AttnMaskType(attn_mask_type.item())
            output_ = self.core_attention(
                query,
                key,
                value,
                attention_mask,
                attn_mask_type=attn_mask_type,
                attention_bias=attention_bias,
                packed_seq_params=packed_seq_params,
            )
            return output_

        if attn_mask_type is None:
            attn_mask_type = self.attn_mask_type
        attn_mask_type = torch.tensor([attn_mask_type.value], dtype=torch.int)
        hidden_states = tensor_parallel.checkpoint(
            custom_forward, False, query, key, value, attention_mask, rotary_pos_emb, attn_mask_type
        )

        return hidden_states

    def _allocate_memory(self, inference_max_sequence_length, batch_size, dim, dtype):
        """Allocate memory to store kv cache during inference."""

        return torch.empty(
            inference_max_sequence_length,
            batch_size,
            self.num_query_groups_per_partition,
            dim,
            dtype=dtype,
            device=torch.cuda.current_device(),
        )

    def _adjust_key_value_for_inference(
        self,
        inference_params: InferenceParams,
        query: Tensor,
        key: Tensor,
        value: Tensor,
        rotary_pos_emb: Tensor,
        rotary_pos_cos: Tensor = None,
        rotary_pos_sin: Tensor = None,
        sequence_len_offset=None,
    ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
        """
        Saves the generated key and value tensors to the end of the buffers in inference_params.
        Returns the full size keys and values from the provided inference_params, as well as
        adjusted rotary_pos_emb.

        Returns a tuple: (key, value, rotary_pos_emb)

        """
        attn_mask_type = self.attn_mask_type
        if inference_params is None:
            return query, key, value, rotary_pos_emb, attn_mask_type

        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
        if self.layer_number not in inference_params.key_value_memory_dict:
            inf_max_seq_length = inference_params.max_sequence_length
            inf_max_batch_size = inference_params.max_batch_size
            inference_key_memory = self._allocate_memory(
                inf_max_seq_length, inf_max_batch_size, self.key_hidden_size, key.dtype
            )
            inference_value_memory = self._allocate_memory(
                inf_max_seq_length, inf_max_batch_size, self.val_hidden_size, value.dtype
            )
            inference_params.key_value_memory_dict[self.layer_number] = (
                inference_key_memory,
                inference_value_memory,
            )
        else:
            # Get the pre-allocated buffers for this layer
            inference_key_memory, inference_value_memory = inference_params.key_value_memory_dict[
                self.layer_number
            ]

        if inference_params.sequence_len_offset > 0:
            # This should mean that we are past the prompt forward_step
            # and so we need to turn off masking
            attn_mask_type = AttnMaskType.no_mask

        batch_start = inference_params.batch_size_offset
        batch_end = batch_start + key.size(1)
        assert batch_end <= inference_key_memory.size(1)
        sequence_start = inference_params.sequence_len_offset
        sequence_end = sequence_start + key.size(0)
        assert sequence_end <= inference_key_memory.size(0), (
            "Current sequence length is longer than expected maximum sequence length! "
            "Increase inference_max_seq_length."
        )

        if self.config.flash_decode:
            assert (
                rotary_pos_cos is not None and rotary_pos_sin is not None
            ), "Flash decoding requires precomputed cos and sin tensors"
            if inference_params.sequence_len_offset > 0:  # Decode phase, not prefill
                rotary_pos_cos_q = rotary_pos_cos[sequence_end - 1 : sequence_end]
                rotary_pos_sin_q = rotary_pos_sin[sequence_end - 1 : sequence_end]
                rotary_pos_cos_k = rotary_pos_cos[sequence_end - 1 : sequence_end]
                rotary_pos_sin_k = rotary_pos_sin[sequence_end - 1 : sequence_end]
            else:  # Prefill
                rotary_pos_cos_q = rotary_pos_cos[:sequence_end]
                rotary_pos_sin_q = rotary_pos_sin[:sequence_end]
                rotary_pos_cos_k = rotary_pos_cos[:sequence_end]
                rotary_pos_sin_k = rotary_pos_sin[:sequence_end]

            # Flash Decoding assumes that the keys stored in the KV Cache already have RoPE applied.
            # Apply RoPE before we store the keys to make it compatible with flash decoding kernel.
            key = apply_rotary_pos_emb_with_cos_sin(key, rotary_pos_cos_k, rotary_pos_sin_k)
            query = apply_rotary_pos_emb_with_cos_sin(query, rotary_pos_cos_q, rotary_pos_sin_q)
        else:
            rotary_pos_cos_q = None
            rotary_pos_sin_q = None

        # Copy key and values.
        inference_key_memory[sequence_start:sequence_end, batch_start:batch_end, ...] = key
        inference_value_memory[sequence_start:sequence_end, batch_start:batch_end, ...] = value
        key = inference_key_memory[:sequence_end, batch_start:batch_end, ...]
        value = inference_value_memory[:sequence_end, batch_start:batch_end, ...]

        # adjust the key rotary positional embedding
        if rotary_pos_emb is None:
            return query, key, value, rotary_pos_emb, attn_mask_type

        q_pos_emb, k_pos_emb = rotary_pos_emb
        q_pos_emb = q_pos_emb[sequence_start:sequence_end, :, :, :]
        k_pos_emb = k_pos_emb[:sequence_end, :, :, :]
        rotary_pos_emb = (q_pos_emb, k_pos_emb)

        return query, key, value, rotary_pos_emb, attn_mask_type

    @abstractmethod
    def get_query_key_value_tensors(self, hidden_states, key_value_states):
        """
        This method needs to be implemented based on whether the derived class
        is "self-attn" or "cross-attn".
        """

    def flash_decoding(
        self,
        sequence_len_offset: Tensor,
        query_layer: Tensor,
        key_layer: Tensor,
        value_layer: Tensor,
        inference_key_memory: Tensor,
        inference_value_memory: Tensor,
        rotary_cos: Tensor,
        rotary_sin: Tensor,
    ) -> (Tensor, Tensor):
        """
        The flash decoding kernel will do the following in a single execution:
        1. Compute RoPE embedding with precomputed cos & sin tensors
        2. Update the KV Cache
        3. Performs the flash attention operation
        """
        assert flash_attn_with_kvcache is not None, (
            "Flash Decoding requires the flash_attn_with_kvcache kernel, "
            "available in the flash-attn package."
        )
        cache_seqlens = sequence_len_offset - 1
        q = query_layer.permute(1, 0, 2, 3)
        k = key_layer.permute(1, 0, 2, 3)
        v = value_layer.permute(1, 0, 2, 3)
        k_cache = inference_key_memory.permute(1, 0, 2, 3)
        v_cache = inference_value_memory.permute(1, 0, 2, 3)

        if rotary_cos is not None:
            rotary_cos = rotary_cos.to(query_layer.dtype)
        if rotary_sin is not None:
            rotary_sin = rotary_sin.to(query_layer.dtype)

        out = flash_attn_with_kvcache(
            q=q,
            k_cache=k_cache,
            v_cache=v_cache,
            k=k,
            v=v,
            rotary_cos=rotary_cos,
            rotary_sin=rotary_sin,
            cache_seqlens=cache_seqlens,
            rotary_interleaved=False,
        )
        return out

    def forward(
        self,
        hidden_states,
        attention_mask,
        key_value_states=None,
        inference_params=None,
        rotary_pos_emb=None,
        rotary_pos_cos=None,
        rotary_pos_sin=None,
        attention_bias=None,
        packed_seq_params=None,
        sequence_len_offset=None,
    ):
        """
        Perform a forward pass through the attention module.
        """

        # hidden_states: [sq, b, h]
        if self.config.flash_decode:
            rotary_pos_emb = None
        else:
            assert rotary_pos_cos is None and rotary_pos_sin is None

        # For self attention we just duplicate the rotary_pos_emb if it isn't already
        if rotary_pos_emb is not None and not isinstance(rotary_pos_emb, tuple):
            rotary_pos_emb = (rotary_pos_emb,) * 2

        # =====================
        # Query, Key, and Value
        # =====================
        # Get the query, key and value tensors based on the type of attention -
        # self or cross attn.
        query, key, value = self.get_query_key_value_tensors(hidden_states, key_value_states)

        # ===================================================
        # Adjust key, value, and rotary_pos_emb for inference
        # ===================================================

        # This branch only runs in the decode phase of flash decoding and returns after the linear
        # projection. This conditional is not used in the prefill phase or non-flash-decoding cases.
        if (
            self.config.flash_decode
            and inference_params is not None
            and inference_params.decode_mode
        ):
            assert self.layer_number in inference_params.key_value_memory_dict
            assert inference_params.sequence_len_offset is not None
            inference_key_memory, inference_value_memory = inference_params.key_value_memory_dict[
                self.layer_number
            ]
            output = self.flash_decoding(
                sequence_len_offset=sequence_len_offset,
                query_layer=query,
                key_layer=key,
                value_layer=value,
                inference_key_memory=inference_key_memory,
                inference_value_memory=inference_value_memory,
                rotary_cos=rotary_pos_cos,
                rotary_sin=rotary_pos_sin,
            )
            out = output.transpose(0, 1).contiguous()
            context_layer = out.view(out.size(0), out.size(1), -1)
            output, bias = self.linear_proj(context_layer)
            return output, bias

        query, key, value, rotary_pos_emb, attn_mask_type = self._adjust_key_value_for_inference(
            inference_params,
            query,
            key,
            value,
            rotary_pos_emb,
            rotary_pos_cos,
            rotary_pos_sin,
            sequence_len_offset,
        )

        if packed_seq_params is not None:
            query = query.squeeze(1)
            key = key.squeeze(1)
            value = value.squeeze(1)

        # ================================================
        # relative positional embedding (rotary embedding)
        # ================================================
        if rotary_pos_emb is not None and not self.config.flash_decode:
            q_pos_emb, k_pos_emb = rotary_pos_emb

            if packed_seq_params is not None:
                if packed_seq_params.cu_seqlens_q_padded is not None:
                    cu_seqlens_q = packed_seq_params.cu_seqlens_q_padded
                else:
                    cu_seqlens_q = packed_seq_params.cu_seqlens_q
                if packed_seq_params.cu_seqlens_kv_padded is not None:
                    cu_seqlens_kv = packed_seq_params.cu_seqlens_kv_padded
                else:
                    cu_seqlens_kv = packed_seq_params.cu_seqlens_kv
            else:
                cu_seqlens_q = cu_seqlens_kv = None
            query = apply_rotary_pos_emb(
                query, q_pos_emb, config=self.config, cu_seqlens=cu_seqlens_q
            )
            key = apply_rotary_pos_emb(key, k_pos_emb, config=self.config, cu_seqlens=cu_seqlens_kv)

            # TODO, can apply positional embedding to value_layer so it has
            # absolute positional embedding.
            # otherwise, only relative positional embedding takes effect
            # value_layer = apply_rotary_pos_emb(value_layer, k_pos_emb)

        # ==================================
        # core attention computation
        # ==================================

        if self.checkpoint_core_attention and self.training:
            core_attn_out = self._checkpointed_attention_forward(
                query,
                key,
                value,
                attention_mask,
                attn_mask_type=attn_mask_type,
                attention_bias=attention_bias,
                packed_seq_params=packed_seq_params,
            )
        else:
            core_attn_out = self.core_attention(
                query,
                key,
                value,
                attention_mask,
                attn_mask_type=attn_mask_type,
                attention_bias=attention_bias,
                packed_seq_params=packed_seq_params,
            )

        if packed_seq_params is not None and packed_seq_params.qkv_format == 'thd':
            # reshape to same output shape as unpacked case
            # (t, np, hn) -> (t, b=1, h=np*hn)
            # t is the pack size = sum (sq_i)
            # note that batch is a dummy dimension in the packed case
            core_attn_out = core_attn_out.reshape(core_attn_out.size(0), 1, -1)

        # =================
        # Output. [sq, b, h]
        # =================

        output, bias = self.linear_proj(core_attn_out)

        return output, bias


class SelfAttention(Attention):
    """Self-attention layer class

    Self-attention layer takes input with size [s, b, h]
    and returns output of the same size.
    """

    def __init__(
        self,
        config: TransformerConfig,
        submodules: SelfAttentionSubmodules,
        layer_number: int,
        attn_mask_type=AttnMaskType.padding,
        cp_comm_type: str = None,
    ):
        super().__init__(
            config=config,
            submodules=submodules,
            layer_number=layer_number,
            attn_mask_type=attn_mask_type,
            attention_type="self",
            cp_comm_type=cp_comm_type,
        )

        self.linear_qkv = build_module(
            submodules.linear_qkv,
            self.config.hidden_size,
            self.query_projection_size + 2 * self.kv_projection_size,
            config=self.config,
            init_method=self.config.init_method,
            gather_output=False,
            bias=self.config.add_bias_linear or self.config.add_qkv_bias,
            skip_bias_add=False,
            is_expert=False,
            tp_comm_buffer_name='qkv',
        )

        if submodules.q_layernorm is not None:
            self.q_layernorm = build_module(
                submodules.q_layernorm,
                hidden_size=self.hidden_size_per_attention_head,
                config=self.config,
                eps=self.config.layernorm_epsilon,
            )
        else:
            self.q_layernorm = None

        if submodules.k_layernorm is not None:
            self.k_layernorm = build_module(
                submodules.k_layernorm,
                hidden_size=self.hidden_size_per_attention_head,
                config=self.config,
                eps=self.config.layernorm_epsilon,
            )
        else:
            self.k_layernorm = None

    def run_realtime_tests(self):
        """Performs a consistency check.

        This function makes sure that tensors across devices are the same during an experiment.
        This is often not guaranteed to be so because of silent hardware failures (eg, memory
        corruption loading a checkpoint, network traffic corruption encountered during
        data transmission).

        (TODO) In the future, more tensors should be checked across the training run and
        checked every X iterations. This is left for future work. Equality of tensors is probably
        not required; transmitting hashes is sufficient."""

        if not self.config.qk_layernorm:
            return

        # check that all tensor parallel and data parallel ranks have the same
        # Q & K layernorm parameters.
        rank = get_data_parallel_rank()
        inputs = torch.stack(
            [
                self.q_layernorm.weight.data,
                self.q_layernorm.bias.data,
                self.k_layernorm.weight.data,
                self.k_layernorm.bias.data,
            ]
        )
        dp_list = [torch.empty_like(inputs) for _ in range(get_data_parallel_world_size())]
        dp_list[rank] = inputs
        torch.distributed.all_gather(dp_list, inputs, group=get_data_parallel_group())

        def _compare(srcs, tgts, names, parallelism):
            assert len(srcs) == len(tgts) == len(names)
            for src, tgt, name in zip(srcs, tgts, names):
                assert torch.all(src == tgt), (
                    f"Discrepancy between {name} in {parallelism} ranks {i} and {rank}. "
                    f"Diff: {torch.norm(src - tgt)}"
                )

        for i, dp in enumerate(dp_list):
            q_w, q_b, k_w, k_b = torch.unbind(dp)
            _compare(
                [q_w, q_b, k_w, k_b],
                [
                    self.q_layernorm.weight.data,
                    self.q_layernorm.bias.data,
                    self.k_layernorm.weight.data,
                    self.k_layernorm.bias.data,
                ],
                ["q_w", "q_b", "k_w", "k_b"],
                "DP",
            )

        rank = get_tensor_model_parallel_rank()
        tp_list = [torch.empty_like(inputs) for _ in range(get_tensor_model_parallel_world_size())]
        tp_list[rank] = inputs
        torch.distributed.all_gather(tp_list, inputs, group=get_tensor_model_parallel_group())

        for i, tp in enumerate(tp_list):
            q_w, q_b, k_w, k_b = torch.unbind(tp)
            _compare(
                [q_w, q_b, k_w, k_b],
                [
                    self.q_layernorm.weight.data,
                    self.q_layernorm.bias.data,
                    self.k_layernorm.weight.data,
                    self.k_layernorm.bias.data,
                ],
                ["q_w", "q_b", "k_w", "k_b"],
                "TP",
            )

    def get_query_key_value_tensors(self, hidden_states, key_value_states=None):
        """
        Derives `query`, `key` and `value` tensors from `hidden_states`.
        """
        # Attention heads [sq, b, h] --> [sq, b, ng * (np/ng + 2) * hn)]
        mixed_qkv, _ = self.linear_qkv(hidden_states)

        # [sq, b, hp] --> [sq, b, ng, (np/ng + 2) * hn]
        new_tensor_shape = mixed_qkv.size()[:-1] + (
            self.num_query_groups_per_partition,
            (
                (self.num_attention_heads_per_partition // self.num_query_groups_per_partition + 2)
                * self.hidden_size_per_attention_head
            ),
        )
        mixed_qkv = mixed_qkv.view(*new_tensor_shape)

        split_arg_list = [
            (
                self.num_attention_heads_per_partition
                // self.num_query_groups_per_partition
                * self.hidden_size_per_attention_head
            ),
            self.hidden_size_per_attention_head,
            self.hidden_size_per_attention_head,
        ]

        if SplitAlongDim is not None:

            # [sq, b, ng, (np/ng + 2) * hn]
            # --> [sq, b, ng, np/ng * hn], [sq, b, ng, hn], [sq, b, ng, hn]
            (query, key, value) = SplitAlongDim(mixed_qkv, 3, split_arg_list)
        else:

            # [sq, b, ng, (np/ng + 2) * hn]
            # --> [sq, b, ng, np/ng * hn], [sq, b, ng, hn], [sq, b, ng, hn]
            (query, key, value) = torch.split(mixed_qkv, split_arg_list, dim=3)

        # [sq, b, ng, np/ng * hn] -> [sq, b, np, hn]
        query = query.reshape(query.size(0), query.size(1), -1, self.hidden_size_per_attention_head)

        if self.q_layernorm is not None:
            query = self.q_layernorm(query)

        if self.k_layernorm is not None:
            key = self.k_layernorm(key)

        if self.config.test_mode:
            self.run_realtime_tests()

        return query, key, value


class CrossAttention(Attention):
    """Cross-attention layer class

    Cross-attention layer takes input with size [s, b, h] and context with size
    [s, b, h] and returns output of the same size.
    """

    def __init__(
        self,
        config: TransformerConfig,
        submodules: CrossAttentionSubmodules,
        layer_number: int,
        attn_mask_type=AttnMaskType.padding,
        cp_comm_type: str = None,
    ):
        super().__init__(
            config=config,
            submodules=submodules,
            layer_number=layer_number,
            attn_mask_type=attn_mask_type,
            attention_type="cross",
            cp_comm_type=cp_comm_type,
        )

        if self.config.num_query_groups != self.config.num_attention_heads:
            raise ValueError("Group query attention is not currently supported in cross attention.")
        assert self.query_projection_size == self.kv_projection_size

        self.linear_q = build_module(
            submodules.linear_q,
            self.config.hidden_size,
            self.query_projection_size,
            config=self.config,
            init_method=self.config.init_method,
            gather_output=False,
            bias=self.config.add_bias_linear,
            skip_bias_add=False,
            is_expert=False,
        )

        self.linear_kv = build_module(
            submodules.linear_kv,
            self.config.hidden_size,
            2 * self.kv_projection_size,
            config=self.config,
            init_method=self.config.init_method,
            gather_output=False,
            bias=self.config.add_bias_linear,
            skip_bias_add=False,
            is_expert=False,
        )

    def get_query_key_value_tensors(self, hidden_states, key_value_states):
        """
        Derives `query` tensor from `hidden_states`, and `key`/`value` tensors
        from `key_value_states`.
        """
        # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
        mixed_kv, _ = self.linear_kv(key_value_states)

        # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
        new_tensor_shape = mixed_kv.size()[:-1] + (
            self.num_attention_heads_per_partition,
            2 * self.hidden_size_per_attention_head,
        )
        mixed_kv = mixed_kv.view(*new_tensor_shape)

        # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
        (key, value) = tensor_parallel.split_tensor_along_last_dim(mixed_kv, 2)

        # Attention head [sq, b, h] --> [sq, b, hp]
        query, _ = self.linear_q(hidden_states)

        # [sq, b, hp] --> [sq, b, np, hn]
        new_tensor_shape = query.size()[:-1] + (
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
        )
        query = query.view(*new_tensor_shape)

        return query, key, value