parallel_state.py 85.5 KB
Newer Older
silencealiang's avatar
silencealiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Model and data parallel groups."""

import os
import warnings
from datetime import timedelta
from functools import partial
from itertools import cycle
from typing import Callable, List, Optional

import torch

from .utils import GlobalMemoryBuffer, is_torch_min_version

# Intra-layer model parallel group that the current rank belongs to.
_TENSOR_MODEL_PARALLEL_GROUP = None
# Inter-layer model parallel group that the current rank belongs to.
_PIPELINE_MODEL_PARALLEL_GROUP = None
# Model parallel group (both intra- and pipeline) that the current rank belongs to.
_MODEL_PARALLEL_GROUP = None
# Model parallel group (both intra-, pipeline, and expert) that the current rank belongs to.
# Embedding group.
_EMBEDDING_GROUP = None
# Position embedding group.
_POSITION_EMBEDDING_GROUP = None
# Data parallel group that the current rank belongs to.
_DATA_PARALLEL_GROUP = None
_DATA_PARALLEL_GROUP_GLOO = None
# tensor model parallel group and data parallel group combined
# used for fp8 and moe training
_TENSOR_AND_DATA_PARALLEL_GROUP = None

### Expert-related parallel states
# Naming convention:
# _EXPERT prefix in group name means it's used for expert layer in MoE models.
# _EXPERT_MODEL denotes expert parallelism which splits number of experts across the group.
# _EXPERT_TENSOR denotes tensor parallelism of expert which splits tensor across the group.
# _EXPERT_DATA denotes data parallelism of expert which replicates weight across the group.

# Expert model parallel group that current rank belongs to.
_EXPERT_MODEL_PARALLEL_GROUP = None
# Expert tensor parallel group that current rank belongs to.
_EXPERT_TENSOR_PARALLEL_GROUP = None
# Expert tensor and model combined parallel group
_EXPERT_TENSOR_AND_MODEL_PARALLEL_GROUP = None
# Expert tensor, model, pipeline combined parallel group
_EXPERT_TENSOR_MODEL_PIPELINE_PARALLEL_GROUP = None
# Expert data parallel group
_EXPERT_DATA_PARALLEL_GROUP = None
_EXPERT_DATA_PARALLEL_GROUP_GLOO = None
# Parallel state values changed on the fly
_MPU_EXPERT_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_EXPERT_MODEL_PARALLEL_RANK = None
_MPU_EXPERT_TENSOR_PARALLEL_WORLD_SIZE = None
_MPU_EXPERT_TENSOR_PARALLEL_RANK = None
### End of expert related parallel states

_VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None
_VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
_PIPELINE_MODEL_PARALLEL_SPLIT_RANK = None

_PIPELINE_MODEL_PARALLEL_DECODER_START = None

# These values enable us to change the mpu sizes on the fly.
_MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_DATA_PARALLEL_WORLD_SIZE = None
_MPU_DATA_PARALLEL_RANK = None
_MPU_TENSOR_MODEL_PARALLEL_RANK = None
_MPU_PIPELINE_MODEL_PARALLEL_RANK = None

# A list of ranks that have a copy of the embedding.
_EMBEDDING_GLOBAL_RANKS = None

# A list of ranks that have a copy of the position embedding.
_POSITION_EMBEDDING_GLOBAL_RANKS = None

# A list of global ranks for each pipeline group to ease calculation of the source
# rank when broadcasting from the first or last pipeline stage.
_PIPELINE_GLOBAL_RANKS = None

# A list of global ranks for each data parallel group to ease calculation of the source
# rank when broadcasting weights from src to all other data parallel ranks
_DATA_PARALLEL_GLOBAL_RANKS = None

# A list of global ranks for each tensor model parallel group to ease calculation of
# the first local rank in the tensor model parallel group
_TENSOR_MODEL_PARALLEL_GLOBAL_RANKS = None

# A list of global ranks for each model parallel group to ease calculation of
# the first local rank in the model parallel group
_MODEL_PARALLEL_GLOBAL_RANKS = None

# Context parallel group that the current rank belongs to
_CONTEXT_PARALLEL_GROUP = None
# A list of global ranks for each context parallel group to ease calculation of the
# destination rank when exchanging KV/dKV between context parallel_ranks
_CONTEXT_PARALLEL_GLOBAL_RANKS = None
# Hierarchical context parallel groups
_HIERARCHICAL_CONTEXT_PARALLEL_GROUPS = []

# Data parallel group information with context parallel combined.
_DATA_PARALLEL_GROUP_WITH_CP = None
_DATA_PARALLEL_GROUP_WITH_CP_GLOO = None
_DATA_PARALLEL_GLOBAL_RANKS_WITH_CP = None

# Partial Data parallel group information with context parallel combined.
_INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP = None
_INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP_GLOO = None
_INTER_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP = None

# combined parallel group of TP and CP
_TENSOR_AND_CONTEXT_PARALLEL_GROUP = None

# combined parallel group of TP, DP, and CP used for fp8
_TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP = None

# Memory buffers to avoid dynamic memory allocation
_GLOBAL_MEMORY_BUFFER = None

# MOE logging
_MOE_LAYER_WISE_LOGGING_TRACKER = {}


def get_nccl_options(pg_name, nccl_comm_cfgs):
    """Set the NCCL process group options.

    Args:
        pg_name (str): process group name
        nccl_comm_cfgs (dict): nccl communicator configurations

    When an option (e.g., max_ctas) is not found in the config, use the NCCL default setting.
    """
    if pg_name in nccl_comm_cfgs:
        nccl_options = torch.distributed.ProcessGroupNCCL.Options()
        nccl_options.config.cga_cluster_size = nccl_comm_cfgs[pg_name].get('cga_cluster_size', 4)
        nccl_options.config.max_ctas = nccl_comm_cfgs[pg_name].get('max_ctas', 32)
        nccl_options.config.min_ctas = nccl_comm_cfgs[pg_name].get('min_ctas', 1)
        if 'net_name' in nccl_comm_cfgs[pg_name]:
            nccl_options.config.net_name = nccl_comm_cfgs[pg_name].get('net_name')
            # verify net_name value
            if nccl_options.config.net_name.lower() not in ['ib', 'socket']:
                raise RuntimeError(
                    f"net_name ({nccl_options.config.net_name}) is not supported."
                    f"Accepted values: 'IB' or 'socket'."
                )
        return nccl_options
    else:
        return None


def create_group(
    ranks=None,
    timeout=None,
    backend=None,
    pg_options=None,
    use_local_synchronization=False,
    group_desc=None,
):
    """Creates a ProcessGroup."""
    kwargs = {
        'ranks': ranks,
        'timeout': timeout,
        'backend': backend,
        'pg_options': pg_options,
        'use_local_synchronization': use_local_synchronization,
        'group_desc': group_desc,
    }
    if not is_torch_min_version('2.4.0'):
        kwargs.pop('group_desc')
        if timeout is None:
            # Old version (e.g. v2.1.2) sets default_pg_timeout as default value to timeout
            # in function signature, then check tiemout value type.
            # New version sets None as default value to timeout in function signature. If value
            # is None, torch will give value according to the backend, then check type.
            # So need to unset timeout here if caller doesn't set value. Otherwise there is
            # type error.
            kwargs.pop('timeout')
    return torch.distributed.new_group(**kwargs)


def generate_masked_orthogonal_rank_groups(
    world_size: int, parallel_size: List[int], mask: List[bool]
) -> List[List[int]]:
    r"""Generate orthogonal parallel groups based on the parallel size and mask.

    Arguments:
        world_size (int): world size

        parallel_size (List[int]):
            The parallel size of each orthogonal parallel type. For example, if
            tensor_parallel_size = 2, pipeline_model_parallel_group = 3, data_parallel_size = 4,
            and the parallel mapping order is tp-pp-dp, then the parallel_size = [2, 3, 4].

        mask (List[bool]):
            The mask controls which parallel methods the generated groups represent. If mask[i] is
            True, it means the generated group contains the i-th parallelism method. For example,
            if parallel_size = [tp_size, pp_size, dp_size], and mask = [True, False , True], then
            the generated group is the `tp-dp` group, if the mask = [False, True, False], then the
            generated group is the `pp` group.

    Algorithm:
        For orthogonal parallelism, such as tp/dp/pp/cp, the global_rank and
        local_rank satisfy the following equation:
            global_rank = tp_rank + dp_rank * tp_size + pp_rank * tp_size * dp_size (1)
                tp_rank \in [0, tp_size)
                dp_rank \in [0, dp_size)
                pp_rank \in [0, pp_size)

        If we want to get the `dp_group` (tp_size * pp_size groups of dp_size ranks each.
        For example,  if the gpu size is 8 and order is 'tp-pp-dp', size is '2-2-2', and the
        dp_group here is [[0, 4], [1, 5], [2, 6], [3, 7]].)
        The tp_rank and pp_rank will be combined to form the `dp_group_index`.
            dp_group_index = tp_rank + pp_rank * tp_size (2)

        So, Given that tp_rank and pp_rank satisfy equation (2), and dp_rank in
        range(0, dp_size), the ranks in dp_group[dp_group_index] satisfies the
        equation (1).

        This function solve this math problem.

    For example, if the parallel_size = [tp_size, dp_size, pp_size] = [2, 3, 4],
    and the mask = [False, True, False]. Then,
        dp_group_index(0) = tp_rank(0) + pp_rank(0) * 2
        dp_group_index(1) = tp_rank(1) + pp_rank(0) * 2
        ...
        dp_group_index(7) = tp_rank(1) + pp_rank(3) * 2

        dp_group[0] = 0 + range(0, 3) * 2 + 0 = [0, 2, 4]
        dp_group[1] = 1 + range(0, 3) * 2 + 0 = [1, 3, 5]
        ...
        dp_group[7] = 1 + range(0, 3) * 2 + 3 * 2 * 3 = [19, 21, 23]
    """

    def prefix_product(a: List[int], init=1) -> List[int]:
        r = [init]
        for v in a:
            init = init * v
            r.append(init)
        return r

    def inner_product(a: List[int], b: List[int]) -> int:
        return sum([x * y for x, y in zip(a, b)])

    def decompose(index, shape, stride=None):
        """
        This function solve the math problem below:
            There is an equation:
                index = sum(idx[i] * stride[i])
            And given the value of index, stride.
            Return the idx.
        This function will be used to get the pp/dp/pp_rank
        from group_index and rank_in_group.
        """
        if stride is None:
            stride = prefix_product(shape)
        idx = [(index // d) % s for s, d in zip(shape, stride)]
        # stride is a prefix_product result. And the value of stride[-1]
        # is not used.
        assert (
            sum([x * y for x, y in zip(idx, stride[:-1])]) == index
        ), "idx {} with shape {} mismatch the return idx {}".format(index, shape, idx)
        return idx

    masked_shape = [s for s, m in zip(parallel_size, mask) if m]
    unmasked_shape = [s for s, m in zip(parallel_size, mask) if not m]

    global_stride = prefix_product(parallel_size)
    masked_stride = [d for d, m in zip(global_stride, mask) if m]
    unmasked_stride = [d for d, m in zip(global_stride, mask) if not m]

    group_size = prefix_product(masked_shape)[-1]
    num_of_group = world_size // group_size

    ranks = []
    for group_index in range(num_of_group):
        # get indices from unmaksed for group_index.
        decomposed_group_idx = decompose(group_index, unmasked_shape)
        rank = []
        for rank_in_group in range(group_size):
            # get indices from masked for rank_in_group.
            decomposed_rank_idx = decompose(rank_in_group, masked_shape)
            rank.append(
                inner_product(decomposed_rank_idx, masked_stride)
                + inner_product(decomposed_group_idx, unmasked_stride)
            )
        ranks.append(rank)
    return ranks


def create_hierarchical_parallel_groups(
    rank, ranks, group_size, hierarchical_group_sizes, pg_options
):
    """Create hierarchical groups for one parallelism.
    Taking a group size of 16 as example, so we have a total of 16 GPUs denoted by g0 ... g15.
    If the hierarchical group sizes are [2,2,4], we use 2 GPUs in the first and second level
    of sub-groups, and 4 GPUs in the last level of sub groups. The present function will
    create 8 level-1 sub-groups, 8 level-2 sub-groups and 4 level-3 sub-groups as:
        8 level-1 sub-groups:
            [g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15]
        8 level-2 sub-groups:
            [g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15]
        4 level-3 sub-groups:
            [g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15]
    """

    hierarchical_groups = []
    accumulated_group_sizes = 1
    processed_group_sizes = 1
    for level, hierarchical_group_size in enumerate(hierarchical_group_sizes):
        accumulated_group_sizes *= hierarchical_group_size
        for k in range(group_size // accumulated_group_sizes):
            for j in range(processed_group_sizes):
                global_sub_ranks = [
                    ranks[j + i * processed_group_sizes + k * accumulated_group_sizes]
                    for i in range(hierarchical_group_size)
                ]
                sub_group = create_group(
                    global_sub_ranks,
                    pg_options=pg_options,
                    group_desc=f'HIERARCHICAL_CONTEXT_PARALLEL_GROUP_L{level}',
                )
                if rank in global_sub_ranks:
                    hierarchical_groups.append(sub_group)
        processed_group_sizes *= hierarchical_group_size
    return hierarchical_groups


class RankGenerator(object):
    """A class for generating rank groups for different modes of parallelism."""

    def __init__(
        self, tp: int, ep: int, dp: int, pp: int, cp: int, order: str, rank_offset: int = 0
    ) -> None:
        assert (
            ep == 1 or cp == 1
        ), "Both EP and CP > 1 in not allow in one rank generator. \
            CP is only included in default RankGenerator, and EP only in expert RankGenerator."

        self.tp = tp
        self.ep = ep
        self.dp = dp
        self.pp = pp
        self.cp = cp
        self.rank_offset = rank_offset
        self.world_size = tp * dp * pp * cp * ep

        self.name_to_size = {
            "tp": self.tp,
            "pp": self.pp,
            "dp": self.dp,
            "ep": self.ep,
            "cp": self.cp,
        }
        self.order = order
        order = order.lower()

        for name in self.name_to_size.keys():
            if name not in order and self.name_to_size[name] != 1:
                raise RuntimeError(
                    f"The size of ({name}) is ({self.name_to_size[name]}), but you haven't"
                    f"specified the order ({self.order})."
                )
            elif name not in order:
                order = order + '-' + name

        self.order = order
        self.ordered_size = []

        for token in order.split('-'):
            self.ordered_size.append(self.name_to_size[token])

    def get_mask(self, order: str, token: str):
        """Create a mask for the specified tokens based on the given order.

        Args:
            order (str): The order of parallelism types (e.g., 'tp-dp-pp').
            token (str): The specific parallelism types to include in the mask,
                         separated by hyphens (e.g., 'tp-dp').
        """
        ordered_token = order.split('-')
        token_list = token.split('-')
        mask = [False] * len(ordered_token)
        for t in token_list:
            mask[ordered_token.index(t)] = True
        return mask

    def get_ranks(self, token):
        """Get rank group by input token.

        Args:
            token (str):
                Specify the ranks type that want to get. If we want
                to obtain multiple parallel types, we can use a hyphen
                '-' to separate them. For example, if we want to obtain
                the TP_DP group, the token should be 'tp-dp'.
        """
        mask = self.get_mask(self.order, token)
        ranks = generate_masked_orthogonal_rank_groups(self.world_size, self.ordered_size, mask)
        if self.rank_offset > 0:
            for rank_group in ranks:
                for i in range(len(rank_group)):
                    rank_group[i] += self.rank_offset
        return ranks


def default_embedding_ranks(pp_ranks, split_rank=None):
    """Return the default ranks that constitute the stages on which the word embeddings live.
    For most models, these are the first and last pipeline stages.

    We also support the deprecated split rank argument for backwards compatibility."""
    if len(pp_ranks) == 1:
        return [pp_ranks[0]]
    elif split_rank is not None and pp_ranks[split_rank] not in (pp_ranks[0], pp_ranks[-1]):
        return [pp_ranks[0], pp_ranks[split_rank], pp_ranks[-1]]
    else:
        return [pp_ranks[0], pp_ranks[-1]]


def default_position_embedding_ranks(pp_ranks, split_rank=None):
    """Return the default ranks that constitute the stages on which the position embeddings live.
    For most models, this is only the first pipeline stage.

    We also support the deprecated split rank argument for backwards compatibility."""
    if split_rank is not None and pp_ranks[0] != pp_ranks[split_rank]:
        return [pp_ranks[0], pp_ranks[split_rank]]
    else:
        return [pp_ranks[0]]


def initialize_model_parallel(
    tensor_model_parallel_size: int = 1,
    pipeline_model_parallel_size: int = 1,
    virtual_pipeline_model_parallel_size: Optional[int] = None,
    pipeline_model_parallel_split_rank: Optional[int] = None,
    pipeline_model_parallel_comm_backend: Optional[str] = None,
    use_sharp: bool = False,
    context_parallel_size: int = 1,
    hierarchical_context_parallel_sizes: Optional[List[int]] = None,
    expert_model_parallel_size: int = 1,
    num_distributed_optimizer_instances: int = 1,
    expert_tensor_parallel_size: Optional[int] = None,
    nccl_communicator_config_path: Optional[str] = None,
    distributed_timeout_minutes: int = 30,
    order: str = "tp-cp-ep-dp-pp",
    encoder_tensor_model_parallel_size: int = 0,
    encoder_pipeline_model_parallel_size: Optional[int] = 0,
    get_embedding_ranks: Optional[Callable[[List[int], Optional[int]], List[int]]] = None,
    get_position_embedding_ranks: Optional[Callable[[List[int], Optional[int]], List[int]]] = None,
    create_gloo_process_groups: bool = True,
) -> None:
    # pylint: disable=line-too-long
    """Initialize model data parallel groups.

    Args:
        tensor_model_parallel_size (int, default = 1):
            The number of GPUs to split individual tensors across.

        pipeline_model_parallel_size (int, default = 1):
            The number of tensor parallel GPU groups to split the
            Transformer layers across. For example, if
            tensor_model_parallel_size is 4 and
            pipeline_model_parallel_size is 2, the model will be split
            into 2 groups of 4 GPUs.

        virtual_pipeline_model_parallel_size (int, optional):
            The number of stages that each pipeline group will have,
            interleaving as necessary. If None, no interleaving is
            performed. For example, if tensor_model_parallel_size is 1,
            pipeline_model_parallel_size is 4,
            virtual_pipeline_model_parallel_size is 2, and there are
            16 transformer layers in the model, the model will be
            split into 8 stages with two layers each and each GPU
            would get 2 stages as such (layer number starting with 1):

            GPU 0: [1, 2] [9, 10]
            GPU 1: [3, 4] [11, 12]
            GPU 2: [5, 6] [13, 14]
            GPU 3: [7, 8] [15, 16]

        pipeline_model_parallel_split_rank (int, optional):
            DEPRECATED. For models with both an encoder and decoder, the rank in
            pipeline to switch between encoder and decoder (i.e. the
            first rank of the decoder). This allows the user to set
            the pipeline parallel size of the encoder and decoder
            independently. For example, if
            pipeline_model_parallel_size is 8 and
            pipeline_model_parallel_split_rank is 3, then ranks 0-2
            will be the encoder and ranks 3-7 will be the decoder.

        pipeline_model_parallel_comm_backend (str, optional):
            The backend to use for pipeline parallel communication.
            If None, the default backend will be used.

        use_sharp (bool, default = False):
            Set the use of SHARP for the collective communications of
            data-parallel process groups. When `True`, run barrier
            within each data-parallel process group, which specifies
            the SHARP application target groups.

        context_parallel_size (int, default = 1):
            The number of tensor parallel GPU groups to split the
            network input sequence length across. Compute of attention
            module requires tokens of full sequence length, so GPUs
            in a context parallel group need to communicate with each
            other to exchange information of other sequence chunks.
            Each GPU and its counterparts in other tensor parallel
            groups compose a context parallel group.

            For example, assume we have 8 GPUs, if tensor model parallel
            size is 4 and context parallel size is 2, the network input
            will be split into two sequence chunks, which are processed
            by 2 different groups of 4 GPUs. One chunk is processed by
            GPU0-3, the other chunk is processed by GPU4-7. Four groups
            are build to do context parallel communications: [GPU0, GPU4],
            [GPU1, GPU5], [GPU2, GPU6], and [GPU3, GPU7].

            Context parallelism partitions sequence length, so it has no
            impact on weights, which means weights are duplicated among
            GPUs in a context parallel group. Hence, weight gradients
            all-reduce is required in backward. For simplicity, we piggyback
            GPUs of context parallelism on data parallel group for
            weight gradient all-reduce.

        expert_model_parallel_size (int, default = 1):
            The number of Mixture of Experts parallel GPUs in each expert
            parallel group.

        num_distributed_optimizer_instances (int, default = 1):
            The number of distributed optimizer replicas across the data-
            parallel domain.

        expert_tensor_parallel_size (int, default = tp_size):
            The number of GPUs to split individual tensors of expert.

        nccl_communicator_config_path (str, default = None):
            Path to the yaml file of NCCL communicator configurations.
            `min_ctas`, `max_ctas`, and `cga_cluster_size` can be set
            for each communicator.

        distributed_timeout_minutes (int, default = 30): Timeout, in
            minutes,for operations executed against distributed
            process groups. See PyTorch documentation at
            https://pytorch.org/docs/stable/distributed.html for
            caveats.

        order (str, default=tp-dp-pp):
            The rank initialization order of parallelism. Now we support
            tp-dp-pp and tp-pp-dp orders.

        encoder_tensor_model_parallel_size (int, default = 0):
            The number of GPUs to split individual tensors across in the encoder. If 0,
            then we use the default, decoder's tensor model parallel size.

        encoder_pipeline_model_parallel_size (int, default = 0):
            The number of tensor parallel GPU groups to allocate to the encoder. As an example,
            if pipeline_model_parallel_size is 4 and encoder_pipeline_model_parallel_size is 2,
            then the encoder will use the first two pipeline stages for its layers, and the total
            amount of pipelineing is 6.

        get_embedding_ranks (Callable[[List[int], Optional[int]], List[int]], optional, default=None):
            A function that takes in a list of ranks for a pipeline group and returns
            those ranks that should have embeddings.

        get_position_embedding_ranks (Callable[[List[int], Optional[int]], List[int]], optional, default=None):
            A function that takes in a list of ranks for a pipeline group, and returns
            those ranks that should have position embeddings.

        create_gloo_process_groups (bool, default = True):
            Create Gloo process groups if set to True. If set to False, Gloo process groups are
            not created and calls to get Gloo process groups will result in assertion errors.

    Let's say we have a total of 16 GPUs denoted by g0 ... g15 and we
    use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
    the model pipeline. The present function will
    create 8 tensor model-parallel groups, 4 pipeline model-parallel groups
    and 8 data-parallel groups as:
        8 data_parallel groups:
            [g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15]
        8 tensor model-parallel groups:
            [g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15]
        4 pipeline model-parallel groups:
            [g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15]
    Note that for efficiency, the caller should make sure adjacent ranks
    are on the same DGX box. For example if we are using 2 DGX-1 boxes
    with a total of 16 GPUs, rank 0 to 7 belong to the first box and
    ranks 8 to 15 belong to the second box.

    """
    if encoder_pipeline_model_parallel_size is None:
        encoder_pipeline_model_parallel_size = 0

    if encoder_tensor_model_parallel_size == 0 and encoder_pipeline_model_parallel_size > 0:
        encoder_tensor_model_parallel_size = tensor_model_parallel_size

    if get_embedding_ranks is None:
        get_embedding_ranks = partial(
            default_embedding_ranks, split_rank=pipeline_model_parallel_split_rank
        )

    if get_position_embedding_ranks is None:
        get_position_embedding_ranks = partial(
            default_position_embedding_ranks, split_rank=pipeline_model_parallel_split_rank
        )

    if encoder_pipeline_model_parallel_size > 0:
        global _PIPELINE_MODEL_PARALLEL_DECODER_START
        _PIPELINE_MODEL_PARALLEL_DECODER_START = encoder_pipeline_model_parallel_size

    # Get world size and rank. Ensure some consistencies.
    assert torch.distributed.is_initialized()
    world_size: int = torch.distributed.get_world_size()

    if encoder_tensor_model_parallel_size > 0:
        assert (
            encoder_tensor_model_parallel_size <= tensor_model_parallel_size
        ), "We do not support encoders with more TP than the decoder."

    encoder_model_size = (
        encoder_tensor_model_parallel_size
        * encoder_pipeline_model_parallel_size
        * context_parallel_size
    )
    decoder_model_size = (
        tensor_model_parallel_size * pipeline_model_parallel_size * context_parallel_size
    )
    total_model_size = encoder_model_size + decoder_model_size

    if world_size % total_model_size != 0:
        raise RuntimeError(f"world_size ({world_size}) is not divisible by {total_model_size}")

    data_parallel_size: int = world_size // total_model_size

    encoder_world_size = encoder_model_size * data_parallel_size
    decoder_world_size = decoder_model_size * data_parallel_size

    assert (
        encoder_world_size + decoder_world_size == world_size
    ), f"{encoder_world_size=} + {decoder_world_size=} != {world_size=}"

    if virtual_pipeline_model_parallel_size is not None:
        if not pipeline_model_parallel_size > 1:
            raise RuntimeError(
                "pipeline-model-parallel size should be greater than 1 with interleaved schedule"
            )
        global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
        global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
        _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = 0
        _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = virtual_pipeline_model_parallel_size

    if pipeline_model_parallel_split_rank is not None:
        global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
        _PIPELINE_MODEL_PARALLEL_SPLIT_RANK = pipeline_model_parallel_split_rank

    rank = torch.distributed.get_rank()

    nccl_comm_cfgs = {}
    if nccl_communicator_config_path is not None:
        try:
            import yaml
        except ImportError:
            raise RuntimeError(
                "Cannot import `yaml`. Setting custom nccl communicator configs "
                "requires the yaml package."
            )

        with open(nccl_communicator_config_path, "r") as stream:
            nccl_comm_cfgs = yaml.safe_load(stream)

    if encoder_world_size > 0:
        encoder_rank_generator = RankGenerator(
            tp=encoder_tensor_model_parallel_size,
            ep=1,
            dp=data_parallel_size,
            pp=encoder_pipeline_model_parallel_size,
            cp=context_parallel_size,
            order=order,
            rank_offset=0,
        )
    else:
        encoder_rank_generator = None

    decoder_rank_generator = RankGenerator(
        tp=tensor_model_parallel_size,
        ep=1,
        dp=data_parallel_size,
        pp=pipeline_model_parallel_size,
        cp=context_parallel_size,
        order=order,
        rank_offset=encoder_world_size,
    )

    # Build expert rank generator
    if expert_tensor_parallel_size is None:
        expert_tensor_parallel_size = tensor_model_parallel_size
    expert_tensor_model_pipeline_parallel_size = (
        expert_tensor_parallel_size * expert_model_parallel_size * pipeline_model_parallel_size
    )
    expert_data_parallel_size = decoder_world_size // expert_tensor_model_pipeline_parallel_size
    if decoder_world_size % expert_tensor_model_pipeline_parallel_size != 0:
        raise RuntimeError(
            f"decoder world_size ({decoder_world_size}) is not divisible by expert_tensor_model_pipeline_parallel size ({expert_tensor_model_pipeline_parallel_size})"
        )

    # TODO: support expert specific ordering
    expert_decoder_rank_generator = RankGenerator(
        tp=expert_tensor_parallel_size,
        ep=expert_model_parallel_size,
        dp=expert_data_parallel_size,
        pp=pipeline_model_parallel_size,
        cp=1,
        order=order,
        rank_offset=encoder_world_size,
    )

    assert (
        order.endswith("pp")
        or pipeline_model_parallel_size == 1
        or expert_data_parallel_size == data_parallel_size
    ), "When not using pp-last rank ordering, the data parallel size of the attention and moe layers must be the same"

    assert decoder_rank_generator.get_ranks("pp") == expert_decoder_rank_generator.get_ranks(
        "pp"
    ), f"Pipeline parallel groups are expected to be the same for Non-Expert and Expert part, \
    but got {decoder_rank_generator.get_ranks('pp')} and {expert_decoder_rank_generator.get_ranks('pp')}"

    def generator_wrapper(group_type, is_expert=False, **kwargs):
        """The `RankGenerator` class produces a hyper-rectangle for a given set of
        tensor, pipeline, data, expert, and context parallelism. If we have an encoder,
        in addition to the default decoder, we essentially instantiate two `RankGenerator`
        classes to construct the parallelism for each module separately, and we then have
        to stitch them together for the right groups. For now, this means pp and tp-pp."""
        if is_expert:
            d_ranks = expert_decoder_rank_generator.get_ranks(group_type, **kwargs)
        else:
            d_ranks = decoder_rank_generator.get_ranks(group_type, **kwargs)

        if encoder_rank_generator is None:
            for x in d_ranks:
                yield x
            return
        e_ranks = encoder_rank_generator.get_ranks(group_type, **kwargs)
        if group_type == 'pp':
            # Map 1 encoder tp rank to several decoder tp ranks, because
            # these won't be the same size.
            for x, y in zip(cycle(e_ranks), d_ranks):
                yield x + y
        elif group_type == 'tp-pp':
            # For this group, we can just return the concatenated
            # groups together, because their sizes are the same.
            assert len(e_ranks) == len(d_ranks)
            for x, y in zip(e_ranks, d_ranks):
                yield x + y
        else:
            for x in e_ranks:
                yield x
            for x in d_ranks:
                yield x

    timeout = timedelta(minutes=distributed_timeout_minutes)

    # Build the data-parallel groups.
    global _DATA_PARALLEL_GROUP
    global _DATA_PARALLEL_GROUP_GLOO
    global _DATA_PARALLEL_GLOBAL_RANKS
    global _DATA_PARALLEL_GROUP_WITH_CP
    global _DATA_PARALLEL_GROUP_WITH_CP_GLOO
    global _DATA_PARALLEL_GLOBAL_RANKS_WITH_CP
    global _INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP
    global _INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP_GLOO
    global _INTER_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP
    assert _DATA_PARALLEL_GROUP is None, 'data parallel group is already initialized'

    for ranks in generator_wrapper('dp'):
        group = create_group(
            ranks,
            timeout=timeout,
            pg_options=get_nccl_options('dp', nccl_comm_cfgs),
            group_desc='DATA_PARALLEL_GROUP',
        )
        if create_gloo_process_groups:
            group_gloo = create_group(
                ranks, timeout=timeout, backend="gloo", group_desc='DATA_PARALLEL_GROUP_GLOO'
            )
        else:
            group_gloo = None
        if rank in ranks:
            _DATA_PARALLEL_GROUP = group
            _DATA_PARALLEL_GROUP_GLOO = group_gloo
            _DATA_PARALLEL_GLOBAL_RANKS = ranks

    assert (
        data_parallel_size * context_parallel_size
    ) % num_distributed_optimizer_instances == 0, (
        'Data parallel size should be divisible by partial DistOpt shard factor'
    )
    intra_partial_data_parallel_size = (
        data_parallel_size * context_parallel_size
    ) // num_distributed_optimizer_instances

    for ranks_with_cp in generator_wrapper('dp-cp'):
        group_with_cp = create_group(
            ranks_with_cp,
            timeout=timeout,
            pg_options=get_nccl_options('dp_cp', nccl_comm_cfgs),
            group_desc='DATA_PARALLEL_GROUP_WITH_CP',
        )
        if create_gloo_process_groups:
            group_with_cp_gloo = create_group(
                ranks_with_cp,
                timeout=timeout,
                backend="gloo",
                group_desc='DATA_PARALLEL_GROUP_WITH_CP_GLOO',
            )
        else:
            group_with_cp_gloo = None
        if rank in ranks_with_cp:
            _DATA_PARALLEL_GROUP_WITH_CP = group_with_cp
            _DATA_PARALLEL_GROUP_WITH_CP_GLOO = group_with_cp_gloo
            _DATA_PARALLEL_GLOBAL_RANKS_WITH_CP = ranks_with_cp

        if num_distributed_optimizer_instances > 1:
            # Create groups for Partial DistOpt, one for intra-partial DP domain
            # Another for inter-partial DP domain
            for i in range(num_distributed_optimizer_instances):
                intra_partial_data_parallel_ranks_with_cp = ranks_with_cp[
                    (i * intra_partial_data_parallel_size) : (
                        (i + 1) * intra_partial_data_parallel_size
                    )
                ]

                intra_partial_data_parallel_group_with_cp = create_group(
                    intra_partial_data_parallel_ranks_with_cp,
                    timeout=timeout,
                    pg_options=get_nccl_options('intra_dp_cp', nccl_comm_cfgs),
                    group_desc='INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP',
                )
                if create_gloo_process_groups:
                    intra_partial_data_parallel_group_with_cp_gloo = create_group(
                        intra_partial_data_parallel_ranks_with_cp,
                        timeout=timeout,
                        backend="gloo",
                        group_desc='INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP_GLOO',
                    )
                else:
                    intra_partial_data_parallel_group_with_cp_gloo = None

                if rank in intra_partial_data_parallel_ranks_with_cp:
                    _INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP = (
                        intra_partial_data_parallel_group_with_cp
                    )
                    _INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP_GLOO = (
                        intra_partial_data_parallel_group_with_cp_gloo
                    )

            for i in range(intra_partial_data_parallel_size):
                inter_partial_data_parallel_ranks_with_cp = ranks_with_cp[
                    i::intra_partial_data_parallel_size
                ]

                inter_partial_data_parallel_group_with_cp = create_group(
                    inter_partial_data_parallel_ranks_with_cp,
                    timeout=timeout,
                    pg_options=get_nccl_options('inter_dp_cp', nccl_comm_cfgs),
                    group_desc='INTER_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP',
                )

                if rank in inter_partial_data_parallel_ranks_with_cp:
                    _INTER_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP = (
                        inter_partial_data_parallel_group_with_cp
                    )
        else:
            _INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP = _DATA_PARALLEL_GROUP_WITH_CP
            _INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP_GLOO = _DATA_PARALLEL_GROUP_WITH_CP_GLOO

    # Apply SHARP to DP process groups
    if use_sharp:
        if rank == 0:
            print(
                "The number of process groups to use SHARP with depends on the type "
                "of the network switch. Nvidia QM1 switch supports SAHRP up to 8 "
                "process groups and QM2 supports up to 256 process groups. We apply "
                "SHARP to the communications of the data-parallel domain. If the "
                "number of data-parallel process groups is larger than the max "
                "process groups that the network switch supports, the communication "
                "will fall back to non-SHARP operators. To enable SHARP, "
                "`#SBATCH_NETWORK=sharp` should be set in the sbatch script."
            )
        torch.distributed.barrier(
            group=get_data_parallel_group(with_context_parallel=True),
            device_ids=[torch.cuda.current_device()],
        )
        # Set `NCCL_COLLNET_ENABLE=0` to restrict SHARP application to DP process groups
        os.environ["NCCL_COLLNET_ENABLE"] = "0"

    # Build the context-parallel groups.
    global _CONTEXT_PARALLEL_GROUP
    global _CONTEXT_PARALLEL_GLOBAL_RANKS
    assert _CONTEXT_PARALLEL_GROUP is None, 'context parallel group is already initialized'
    for ranks in generator_wrapper('cp'):
        group = create_group(
            ranks,
            timeout=timeout,
            pg_options=get_nccl_options('cp', nccl_comm_cfgs),
            group_desc='CONTEXT_PARALLEL_GROUP',
        )
        if rank in ranks:
            _CONTEXT_PARALLEL_GROUP = group
            _CONTEXT_PARALLEL_GLOBAL_RANKS = ranks
        if hierarchical_context_parallel_sizes:
            global _HIERARCHICAL_CONTEXT_PARALLEL_GROUPS
            _HIERARCHICAL_CONTEXT_PARALLEL_GROUPS += create_hierarchical_parallel_groups(
                rank,
                ranks,
                context_parallel_size,
                hierarchical_context_parallel_sizes,
                get_nccl_options('hcp', nccl_comm_cfgs),
            )

    # Build the model-parallel groups.
    global _MODEL_PARALLEL_GROUP
    global _MODEL_PARALLEL_GLOBAL_RANKS
    assert _MODEL_PARALLEL_GROUP is None, 'model parallel group is already initialized'
    for ranks in generator_wrapper('tp-pp'):
        group = create_group(
            ranks,
            timeout=timeout,
            pg_options=get_nccl_options('mp', nccl_comm_cfgs),
            group_desc='MODEL_PARALLEL_GROUP',
        )
        if rank in ranks:
            _MODEL_PARALLEL_GROUP = group
            _MODEL_PARALLEL_GLOBAL_RANKS = ranks

    # Build the tensor model-parallel groups.
    global _TENSOR_MODEL_PARALLEL_GROUP
    global _TENSOR_MODEL_PARALLEL_GLOBAL_RANKS
    assert (
        _TENSOR_MODEL_PARALLEL_GROUP is None
    ), 'tensor model parallel group is already initialized'
    for ranks in generator_wrapper('tp'):
        group = create_group(
            ranks,
            timeout=timeout,
            pg_options=get_nccl_options('tp', nccl_comm_cfgs),
            group_desc='TENSOR_MODEL_PARALLEL_GROUP',
        )
        if rank in ranks:
            _TENSOR_MODEL_PARALLEL_GROUP = group
            _TENSOR_MODEL_PARALLEL_GLOBAL_RANKS = ranks

    # Build the pipeline model-parallel groups and embedding groups
    # (first and last rank in each pipeline model-parallel group).
    global _PIPELINE_MODEL_PARALLEL_GROUP
    global _PIPELINE_GLOBAL_RANKS
    assert (
        _PIPELINE_MODEL_PARALLEL_GROUP is None
    ), 'pipeline model parallel group is already initialized'
    global _EMBEDDING_GROUP
    global _EMBEDDING_GLOBAL_RANKS
    assert _EMBEDDING_GROUP is None, 'embedding group is already initialized'
    global _POSITION_EMBEDDING_GROUP
    global _POSITION_EMBEDDING_GLOBAL_RANKS
    assert _POSITION_EMBEDDING_GROUP is None, 'position embedding group is already initialized'
    if pipeline_model_parallel_comm_backend == 'ucc':
        # The UCC backend provides two key benefits:
        # 1) Achieves better bandwidth utilization than NCCL when using InfiniBand links.
        # 2) Does not use GPU SM resources (Zero-SM), mitigating performance interference
        #    with overlapping compute kernels.

        # The UCC backend is recommended in the following cases:
        # 1) When the exposed pipeline-parallel (PP) communications are significant.
        #    - E.g., Pipeline parallelism with very less gradient accumulation steps.
        #    - It may provide better performance due to improved bandwidth utilization.
        # 2) When the critical-path pipeline stage has substantial PP-communication overlap.
        #    - E.g., Uneven pipeline parallelism.
        #    - It may provide better performance due to zero SM resource usage.
        if 'CUDA_DEVICE_MAX_CONNECTIONS' in os.environ:
            # UCC backend requires CUDA_DEVICE_MAX_CONNECTIONS variable to be larger than 1,
            # to gurantee the overlapped UCC communications. If this environment variable is set to 1,
            # all the UCC communication will be serialized.
            assert (
                os.environ['CUDA_DEVICE_MAX_CONNECTIONS'] != '1'
            ), "UCC-backend requires CUDA_DEVICE_MAX_CONNECTIONS > 1"

        # Setting up required environment variables for ucc backend
        #
        # "TORCH_UCC_BLOCKING_WAIT=none" allows non-blocking waits of the communiction handle
        # "UCC_EC_CUDA_STREAM_TASK_MODE" controls how CUDA execution engines (EC)
        # schedule tasks on CUDA streams.
        # "UCX_TLS" controls transport layer selection
        # "NSYS_UCP_COMM_PARAMS=1" enables capturing ucx tracing in nsys profiling
        # "UCX_RNDV_THRESH" controls threshold threshold for switching between
        # eager and rendezvous (RNDV) communication protocols.
        # "UCX_NET_DEVICES" select which network interfaces UCX should use.
        # "UCC_CL_BASIC_TLS" controls which Transport Layers are used by
        # the Basic Collective libraray

        os.environ['TORCH_UCC_BLOCKING_WAIT'] = (
            os.environ['TORCH_UCC_BLOCKING_WAIT']
            if "TORCH_UCC_BLOCKING_WAIT" in os.environ
            else 'none'
        )
        os.environ['UCC_EC_CUDA_STREAM_TASK_MODE'] = (
            os.environ['UCC_EC_CUDA_STREAM_TASK_MODE']
            if "UCC_EC_CUDA_STREAM_TASK_MODE" in os.environ
            else 'driver'
        )
        os.environ['UCX_TLS'] = (
            os.environ['UCX_TLS'] if "UCX_TLS" in os.environ else 'ib,cuda_copy'
        )  # cuda_ipc (i.e., NVLink-enablement) will be later supported
        os.environ['NSYS_UCP_COMM_PARAMS'] = '1'
        os.environ['UCX_RNDV_THRESH'] = '0'
        os.environ['UCX_NET_DEVICES'] = 'all'
        os.environ['UCC_CL_BASIC_TLS'] = '^sharp,nccl'

    for ranks in generator_wrapper('pp'):
        group = create_group(
            ranks,
            timeout=timeout,
            backend=pipeline_model_parallel_comm_backend,
            pg_options=(
                None
                if pipeline_model_parallel_comm_backend == 'ucc'
                else get_nccl_options('pp', nccl_comm_cfgs)
            ),
            group_desc='PIPELINE_MODEL_PARALLEL_GROUP',
        )
        assert (
            pipeline_model_parallel_comm_backend == None
            or pipeline_model_parallel_comm_backend == 'nccl'
            or pipeline_model_parallel_comm_backend == 'ucc'
        ), f'"{pipeline_model_parallel_comm_backend}" backend for PP communication is currently not supported'

        if rank in ranks:
            if _PIPELINE_MODEL_PARALLEL_GROUP is None:
                _PIPELINE_MODEL_PARALLEL_GROUP = group
                _PIPELINE_GLOBAL_RANKS = ranks
            elif isinstance(_PIPELINE_GLOBAL_RANKS[0], list):
                _PIPELINE_MODEL_PARALLEL_GROUP.append(group)
                _PIPELINE_GLOBAL_RANKS.append(ranks)
            else:
                _PIPELINE_MODEL_PARALLEL_GROUP = [_PIPELINE_MODEL_PARALLEL_GROUP, group]
                _PIPELINE_GLOBAL_RANKS = [_PIPELINE_GLOBAL_RANKS, ranks]

        embedding_ranks = get_embedding_ranks(ranks)
        group = create_group(
            embedding_ranks,
            timeout=timeout,
            pg_options=get_nccl_options('embd', nccl_comm_cfgs),
            group_desc='EMBEDDING_GROUP',
        )
        if rank in embedding_ranks:
            _EMBEDDING_GROUP = group
            _EMBEDDING_GLOBAL_RANKS = embedding_ranks

        position_embedding_ranks = get_position_embedding_ranks(ranks)
        group = create_group(
            position_embedding_ranks,
            timeout=timeout,
            pg_options=get_nccl_options('pos_embd', nccl_comm_cfgs),
            group_desc='POSITION_EMBEDDING_GROUP',
        )
        if rank in position_embedding_ranks:
            _POSITION_EMBEDDING_GROUP = group
            _POSITION_EMBEDDING_GLOBAL_RANKS = position_embedding_ranks

    # Build the tensor + data parallel groups.
    global _TENSOR_AND_DATA_PARALLEL_GROUP
    global _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP
    assert (
        _TENSOR_AND_DATA_PARALLEL_GROUP is None
    ), 'Tensor + data parallel group is already initialized'
    for ranks in generator_wrapper('tp-dp-cp'):
        group = create_group(
            ranks,
            timeout=timeout,
            pg_options=get_nccl_options('tp_dp_cp', nccl_comm_cfgs),
            group_desc='TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP',
        )
        if rank in ranks:
            _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP = group
    for ranks in generator_wrapper('tp-dp'):
        group = create_group(
            ranks,
            timeout=timeout,
            pg_options=get_nccl_options('tp_dp', nccl_comm_cfgs),
            group_desc='TENSOR_AND_DATA_PARALLEL_GROUP',
        )
        if rank in ranks:
            _TENSOR_AND_DATA_PARALLEL_GROUP = group

    global _TENSOR_AND_CONTEXT_PARALLEL_GROUP
    assert (
        _TENSOR_AND_CONTEXT_PARALLEL_GROUP is None
    ), 'Tensor + context parallel group is already initialized'
    for ranks in generator_wrapper('tp-cp'):
        group = create_group(
            ranks,
            timeout=timeout,
            pg_options=get_nccl_options('tp_cp', nccl_comm_cfgs),
            group_desc='TENSOR_AND_CONTEXT_PARALLEL_GROUP',
        )
        if rank in ranks:
            _TENSOR_AND_CONTEXT_PARALLEL_GROUP = group

    ### Expert-related parallel groups initialization
    # Build the expert model parallel group
    global _EXPERT_MODEL_PARALLEL_GROUP
    assert _EXPERT_MODEL_PARALLEL_GROUP is None, 'Expert parallel group is already initialized'
    for ranks in generator_wrapper('ep', is_expert=True):
        group = create_group(
            ranks,
            pg_options=get_nccl_options('ep', nccl_comm_cfgs),
            group_desc='EXPERT_MODEL_PARALLEL_GROUP',
        )
        if rank in ranks:
            _EXPERT_MODEL_PARALLEL_GROUP = group

    # Build the expert tensor parallel group
    global _EXPERT_TENSOR_PARALLEL_GROUP
    assert (
        _EXPERT_TENSOR_PARALLEL_GROUP is None
    ), 'Expert tensor model parallel group is already initialized'
    for ranks in generator_wrapper('tp', is_expert=True):
        group = create_group(
            ranks,
            timeout=timeout,
            pg_options=get_nccl_options('ep_tp', nccl_comm_cfgs),
            group_desc='EXPERT_TENSOR_PARALLEL_GROUP',
        )
        if rank in ranks:
            _EXPERT_TENSOR_PARALLEL_GROUP = group

    # Build the tensor + expert parallel groups
    global _EXPERT_TENSOR_AND_MODEL_PARALLEL_GROUP
    assert (
        _EXPERT_TENSOR_AND_MODEL_PARALLEL_GROUP is None
    ), 'Expert tensor + model parallel group is already initialized'
    for ranks in generator_wrapper('tp-ep', is_expert=True):
        group = create_group(
            ranks,
            timeout=timeout,
            pg_options=get_nccl_options('tp_ep_mp', nccl_comm_cfgs),
            group_desc='EXPERT_TENSOR_AND_MODEL_PARALLEL_GROUP',
        )
        if rank in ranks:
            _EXPERT_TENSOR_AND_MODEL_PARALLEL_GROUP = group

    # Build the expert+tensor+pipeline parallel groups
    global _EXPERT_TENSOR_MODEL_PIPELINE_PARALLEL_GROUP
    assert (
        _EXPERT_TENSOR_MODEL_PIPELINE_PARALLEL_GROUP is None
    ), 'The expert_tensor_model_pipeline parallel group is already initialized'
    for ranks in generator_wrapper('tp-ep-pp', is_expert=True):
        group = create_group(
            ranks,
            timeout=timeout,
            pg_options=get_nccl_options('tp_ep_pp', nccl_comm_cfgs),
            group_desc='EXPERT_TENSOR_MODEL_PIPELINE_PARALLEL_GROUP',
        )
        if rank in ranks:
            _EXPERT_TENSOR_MODEL_PIPELINE_PARALLEL_GROUP = group

    # Build the expert data parallel group
    global _EXPERT_DATA_PARALLEL_GROUP
    assert _EXPERT_DATA_PARALLEL_GROUP is None, 'Expert data group is already initialized'
    global _EXPERT_DATA_PARALLEL_GROUP_GLOO
    assert _EXPERT_DATA_PARALLEL_GROUP_GLOO is None, 'Expert data group-gloo is already initialized'

    for ranks in generator_wrapper('dp', is_expert=True):
        group = create_group(
            ranks,
            timeout=timeout,
            pg_options=get_nccl_options('ep_dp', nccl_comm_cfgs),
            group_desc='EXPERT_DATA_PARALLEL_GROUP',
        )
        if create_gloo_process_groups:
            group_gloo = create_group(
                ranks, backend="gloo", group_desc='EXPERT_DATA_PARALLEL_GROUP_GLOO'
            )
        else:
            group_gloo = None
        if rank in ranks:
            _EXPERT_DATA_PARALLEL_GROUP = group
            _EXPERT_DATA_PARALLEL_GROUP_GLOO = group_gloo
    ### End of expert related parallel groups initialization

    # Initialize global memory buffer
    # This isn't really "parallel state" but there isn't another good place to
    # put this. If we end up with a more generic initialization of megatron-core
    # we could stick it there
    _set_global_memory_buffer()


def is_initialized():
    """Useful for code segments that may be accessed with or without mpu initialization"""
    return _DATA_PARALLEL_GROUP is not None


def is_unitialized() -> bool:
    """Check if parallel state has been initialized

    Deprecated. Use is_initialized instead.

    """
    warnings.warn("is_unitialized is deprecated, use is_initialized instead", DeprecationWarning)
    return not is_initialized()


def model_parallel_is_initialized():
    """Check if model- and data-parallel groups are initialized."""
    if (
        _TENSOR_MODEL_PARALLEL_GROUP is None
        or _PIPELINE_MODEL_PARALLEL_GROUP is None
        or _DATA_PARALLEL_GROUP is None
    ):
        return False
    return True


def get_model_parallel_group():
    """Get the model-parallel group the caller rank belongs to."""
    assert _MODEL_PARALLEL_GROUP is not None, 'model parallel group is not initialized'
    return _MODEL_PARALLEL_GROUP


def get_tensor_model_parallel_group(check_initialized=True):
    """Get the tensor-model-parallel group the caller rank belongs to."""
    if check_initialized:
        assert (
            _TENSOR_MODEL_PARALLEL_GROUP is not None
        ), 'tensor model parallel group is not initialized'
    return _TENSOR_MODEL_PARALLEL_GROUP


def get_pipeline_model_parallel_group():
    """Get the pipeline-model-parallel group the caller rank belongs to."""
    assert (
        _PIPELINE_MODEL_PARALLEL_GROUP is not None
    ), 'pipeline_model parallel group is not initialized'
    return _PIPELINE_MODEL_PARALLEL_GROUP


def get_data_parallel_group(with_context_parallel=False, partial_data_parallel=False):
    """Get the data-parallel group the caller rank belongs to."""
    if with_context_parallel:
        if partial_data_parallel:
            assert (
                _INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP is not None
            ), 'Intra partial data parallel group is not initialized'
            return _INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP
        assert (
            _DATA_PARALLEL_GROUP_WITH_CP is not None
        ), 'data parallel group with context parallel combined is not initialized'
        return _DATA_PARALLEL_GROUP_WITH_CP
    else:
        assert _DATA_PARALLEL_GROUP is not None, 'data parallel group is not initialized'
        assert partial_data_parallel == False, 'Partial DP for Optimizer needs to include CP'
        return _DATA_PARALLEL_GROUP


def get_data_parallel_group_gloo(with_context_parallel=False, partial_data_parallel=False):
    """Get the Gloo data-parallel group the caller rank belongs to."""
    if with_context_parallel:
        if partial_data_parallel:
            assert (
                _INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP_GLOO is not None
            ), 'Intra partial data parallel group is not initialized'
            return _INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP_GLOO
        assert (
            _DATA_PARALLEL_GROUP_WITH_CP_GLOO is not None
        ), 'data parallel group-gloo with context parallel combined is not initialized'
        return _DATA_PARALLEL_GROUP_WITH_CP_GLOO
    else:
        assert _DATA_PARALLEL_GROUP_GLOO is not None, 'data parallel group-gloo is not initialized'
        assert partial_data_parallel == False, 'Partial DP for Optimizer needs to include CP'
        return _DATA_PARALLEL_GROUP_GLOO


def get_inter_partial_data_parallel_group():
    """Get the group spanning the different partial data-parallel groups."""
    assert (
        _INTER_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP is not None
    ), 'Inter partial data parallel group is not initialized'
    return _INTER_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP


def get_context_parallel_group(check_initialized=True):
    """Get the context-parallel group the caller rank belongs to."""
    if check_initialized:
        assert _CONTEXT_PARALLEL_GROUP is not None, 'context parallel group is not initialized'
    return _CONTEXT_PARALLEL_GROUP


def get_context_parallel_global_ranks(check_initialized=True):
    """Get all global ranks of the context-parallel group that the caller rank belongs to."""
    if check_initialized:
        assert (
            _CONTEXT_PARALLEL_GLOBAL_RANKS is not None
        ), 'context parallel group is not initialized'
    return _CONTEXT_PARALLEL_GLOBAL_RANKS


def get_hierarchical_context_parallel_groups(check_initialized=True):
    """Get the inner ring of context parallel group the caller rank belongs to."""
    if check_initialized:
        assert _HIERARCHICAL_CONTEXT_PARALLEL_GROUPS is not None
    return _HIERARCHICAL_CONTEXT_PARALLEL_GROUPS


def get_embedding_group():
    """Get the embedding group the caller rank belongs to."""
    assert _EMBEDDING_GROUP is not None, 'embedding group is not initialized'
    return _EMBEDDING_GROUP


def get_position_embedding_group():
    """Get the position embedding group the caller rank belongs to."""
    assert _POSITION_EMBEDDING_GROUP is not None, 'position embedding group is not initialized'
    return _POSITION_EMBEDDING_GROUP


def get_amax_reduction_group(with_context_parallel=False, tp_only_amax_red=False):
    """Get the FP8 amax reduction group the caller rank belongs to."""
    if with_context_parallel:
        if not tp_only_amax_red:
            assert (
                _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP is not None
            ), 'FP8 amax reduction group is not initialized'
            return _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP
        else:
            assert (
                _TENSOR_AND_CONTEXT_PARALLEL_GROUP is not None
            ), 'FP8 amax reduction group is not initialized'
            return _TENSOR_AND_CONTEXT_PARALLEL_GROUP
    else:
        if not tp_only_amax_red:
            assert (
                _TENSOR_AND_DATA_PARALLEL_GROUP is not None
            ), 'FP8 amax reduction group is not initialized'
            return _TENSOR_AND_DATA_PARALLEL_GROUP
        else:
            assert (
                _TENSOR_MODEL_PARALLEL_GROUP is not None
            ), 'FP8 amax reduction group is not initialized'
            return _TENSOR_MODEL_PARALLEL_GROUP


def get_tensor_and_data_parallel_group(with_context_parallel=False):
    """Get the tensor- and data-parallel group the caller rank belongs to."""
    if with_context_parallel:
        assert (
            _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP is not None
        ), 'tensor and data parallel group is not initialized'
        return _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP
    else:
        assert (
            _TENSOR_AND_DATA_PARALLEL_GROUP is not None
        ), 'tensor and data parallel group is not initialized'
        return _TENSOR_AND_DATA_PARALLEL_GROUP


def get_tensor_and_context_parallel_group():
    """Get the tensor- and context-parallel group the caller rank belongs to."""
    assert (
        _TENSOR_AND_CONTEXT_PARALLEL_GROUP is not None
    ), 'tensor and context parallel group is not initialized'
    return _TENSOR_AND_CONTEXT_PARALLEL_GROUP


def set_tensor_model_parallel_world_size(world_size):
    """Set the tensor-model-parallel size"""
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = world_size


def set_pipeline_model_parallel_world_size(world_size):
    """Set the pipeline-model-parallel size"""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = world_size


def set_virtual_pipeline_model_parallel_world_size(world_size):
    """Set the pipeline-model-parallel size"""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = world_size


def get_tensor_model_parallel_world_size():
    """Return world size for the tensor-model-parallel group."""
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_tensor_model_parallel_group())


def get_pipeline_model_parallel_world_size():
    """Return world size for the pipeline-model-parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE

    pp_group = get_pipeline_model_parallel_group()
    if isinstance(pp_group, list):
        # Implicit assumption that each PP group is the same size.
        sizes = []
        for group in _PIPELINE_GLOBAL_RANKS:
            sizes.append(len(group))
        assert all(x == sizes[0] for x in sizes)
        return torch.distributed.get_world_size(group=pp_group[0])
    else:
        return torch.distributed.get_world_size(group=pp_group)


def set_tensor_model_parallel_rank(rank):
    """Set tensor-model-parallel rank."""
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    _MPU_TENSOR_MODEL_PARALLEL_RANK = rank


def set_pipeline_model_parallel_rank(rank):
    """Set pipeline-model-parallel rank."""
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    _MPU_PIPELINE_MODEL_PARALLEL_RANK = rank


def set_pipeline_model_parallel_split_rank(rank):
    """Set pipeline-model-parallel split rank. DEPRECATED."""
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    _PIPELINE_MODEL_PARALLEL_SPLIT_RANK = rank


def get_tensor_model_parallel_rank():
    """Return caller's rank for the tensor-model-parallel group."""
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    if _MPU_TENSOR_MODEL_PARALLEL_RANK is not None:
        return _MPU_TENSOR_MODEL_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_tensor_model_parallel_group())


def get_pipeline_model_parallel_rank():
    """Return caller's rank for the pipeline-model-parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    if _MPU_PIPELINE_MODEL_PARALLEL_RANK is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_RANK
    rank = torch.distributed.get_rank()
    pp_group = get_pipeline_model_parallel_group()
    if isinstance(pp_group, list):
        # Assume that if the caller exist in multiple PP groups, then it has the same index.
        indices = []
        for group in _PIPELINE_GLOBAL_RANKS:
            for i, r in enumerate(group):
                if r == rank:
                    indices.append(i)
        assert all(x == indices[0] for x in indices)
        return torch.distributed.get_rank(group=pp_group[0])
    else:
        return torch.distributed.get_rank(group=pp_group)


def get_pipeline_model_parallel_split_rank():
    """Return pipeline-model-parallel split rank."""
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    return _PIPELINE_MODEL_PARALLEL_SPLIT_RANK


def is_pipeline_first_stage(ignore_virtual=False):
    """Return True if in the first pipeline model-parallel stage, False otherwise."""
    if not ignore_virtual:
        if (
            get_virtual_pipeline_model_parallel_world_size() is not None
            and get_virtual_pipeline_model_parallel_rank() != 0
        ):
            return False
    return get_pipeline_model_parallel_rank() == 0


def is_pipeline_last_stage(ignore_virtual=False):
    """Return True if in the last pipeline-model-parallel stage, False otherwise."""
    if not ignore_virtual:
        virtual_pipeline_model_parallel_world_size = (
            get_virtual_pipeline_model_parallel_world_size()
        )
        if (
            virtual_pipeline_model_parallel_world_size is not None
            and get_virtual_pipeline_model_parallel_rank()
            != (virtual_pipeline_model_parallel_world_size - 1)
        ):
            return False
    return get_pipeline_model_parallel_rank() == (get_pipeline_model_parallel_world_size() - 1)


def is_rank_in_embedding_group(ignore_virtual=False):
    """Return true if current rank is in embedding group, False otherwise."""
    rank = torch.distributed.get_rank()
    global _EMBEDDING_GLOBAL_RANKS
    if _EMBEDDING_GLOBAL_RANKS is None:
        return False
    if ignore_virtual:
        return rank in _EMBEDDING_GLOBAL_RANKS
    if rank in _EMBEDDING_GLOBAL_RANKS:
        if rank == _EMBEDDING_GLOBAL_RANKS[0]:
            return is_pipeline_first_stage(ignore_virtual=False)
        elif rank == _EMBEDDING_GLOBAL_RANKS[-1]:
            return is_pipeline_last_stage(ignore_virtual=False)
        else:
            return True
    return False


def is_rank_in_position_embedding_group():
    """Return true if current rank is in position embedding group, False otherwise."""
    rank = torch.distributed.get_rank()
    global _POSITION_EMBEDDING_GLOBAL_RANKS
    return _POSITION_EMBEDDING_GLOBAL_RANKS is not None and rank in _POSITION_EMBEDDING_GLOBAL_RANKS


def is_pipeline_stage_before_split(rank=None):
    """Return True if pipeline stage executes encoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
        return True
    if rank < _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
        return True
    return False


def is_pipeline_stage_after_split(rank=None):
    """Return True if pipeline stage executes decoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
        return True
    if rank >= _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
        return True
    return False


def is_inside_encoder(rank=None) -> bool:
    """Return True if pipeline stage executes encoder block.
    This function implicitly assumes we have a model with both
    encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_DECODER_START
    # _PIPELINE_MODEL_PARALLEL_DECODER_START == None means that the
    # encoder shares the first pipeline rank with the decoder
    if _PIPELINE_MODEL_PARALLEL_DECODER_START is None and rank == 0:
        return True
    # _PIPELINE_MODEL_PARALLEL_DECODER_START != None means that the
    # encoder is on it's own pipeline ranks before the decoder
    if (
        _PIPELINE_MODEL_PARALLEL_DECODER_START is not None
        and rank < _PIPELINE_MODEL_PARALLEL_DECODER_START
    ):
        return True
    return False


def is_inside_decoder(rank=None) -> bool:
    """Return True if pipeline stage executes decoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_DECODER_START
    if _PIPELINE_MODEL_PARALLEL_DECODER_START is None:
        return True
    if rank >= _PIPELINE_MODEL_PARALLEL_DECODER_START:
        return True
    return False


def get_pipeline_model_parallel_decoder_start() -> int:
    """Return decoder start rank (if encoder pipeline parallelism is set)."""
    global _PIPELINE_MODEL_PARALLEL_DECODER_START
    return _PIPELINE_MODEL_PARALLEL_DECODER_START


def is_pipeline_stage_at_split():
    """Return true if pipeline stage executes decoder block and next
    stage executes encoder block for a model with both encoder and
    decoder."""
    rank = get_pipeline_model_parallel_rank()
    return is_pipeline_stage_before_split(rank) and is_pipeline_stage_after_split(rank + 1)


def get_virtual_pipeline_model_parallel_rank():
    """Return the virtual pipeline-parallel rank."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    return _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK


def set_virtual_pipeline_model_parallel_rank(rank):
    """Set the virtual pipeline-parallel rank."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = rank


def get_virtual_pipeline_model_parallel_world_size():
    """Return the virtual pipeline-parallel world size."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    return _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE


def get_tensor_model_parallel_src_rank():
    """Calculate the global rank corresponding to the first local rank
    in the tensor model parallel group."""
    assert (
        _TENSOR_MODEL_PARALLEL_GLOBAL_RANKS is not None
    ), "Tensor model parallel group is not initialized"
    return _TENSOR_MODEL_PARALLEL_GLOBAL_RANKS[0]


def get_model_parallel_src_rank():
    """Calculate the global rank corresponding to the first local rank
    in the model parallel group."""
    assert _MODEL_PARALLEL_GLOBAL_RANKS is not None, "Model parallel group is not initialized"
    return _MODEL_PARALLEL_GLOBAL_RANKS[0]


def get_data_parallel_src_rank(with_context_parallel=False):
    """Calculate the global rank corresponding to the first local rank
    in the data parallel group."""
    if with_context_parallel:
        assert (
            _DATA_PARALLEL_GLOBAL_RANKS_WITH_CP is not None
        ), "Data parallel group with context parallel combined is not initialized"
        return _DATA_PARALLEL_GLOBAL_RANKS_WITH_CP[0]
    else:
        assert _DATA_PARALLEL_GLOBAL_RANKS is not None, "Data parallel group is not initialized"
        return _DATA_PARALLEL_GLOBAL_RANKS[0]


def get_pipeline_model_parallel_first_rank():
    """Return the global rank of the first stage in the current rank's pipeline."""
    assert _PIPELINE_GLOBAL_RANKS is not None, "Pipeline parallel group is not initialized"
    if isinstance(_PIPELINE_GLOBAL_RANKS[0], list):
        # I assume the first rank is the same for all pp groups right now.
        for rank_group in _PIPELINE_GLOBAL_RANKS:
            assert rank_group[0] == _PIPELINE_GLOBAL_RANKS[0][0]
        return _PIPELINE_GLOBAL_RANKS[0][0]
    else:
        return _PIPELINE_GLOBAL_RANKS[0]


def get_pipeline_model_parallel_last_rank():
    """Return the global rank of the last stage in the current rank's pipeline."""
    assert _PIPELINE_GLOBAL_RANKS is not None, "Pipeline parallel group is not initialized"
    last_rank_local = get_pipeline_model_parallel_world_size() - 1
    if isinstance(_PIPELINE_GLOBAL_RANKS[0], list):
        return [group[last_rank_local] for group in _PIPELINE_GLOBAL_RANKS]
    else:
        return _PIPELINE_GLOBAL_RANKS[last_rank_local]


def get_pipeline_model_parallel_next_rank():
    """Return the global rank that follows the caller in the pipeline, for each
    pipeline-parallel group that the rank is part of.

    If it is just part of one group, an int is returned, otherwise a list of ints.
    """
    assert _PIPELINE_GLOBAL_RANKS is not None, "Pipeline parallel group is not initialized"
    rank_in_pipeline = get_pipeline_model_parallel_rank()
    world_size = get_pipeline_model_parallel_world_size()
    if isinstance(_PIPELINE_GLOBAL_RANKS[0], list):
        to_return = []
        for group in _PIPELINE_GLOBAL_RANKS:
            to_return.append(group[(rank_in_pipeline + 1) % world_size])
        return to_return
    else:
        return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline + 1) % world_size]


def get_pipeline_model_parallel_prev_rank():
    """Return the global rank that precedes the caller in the pipeline, for each
    pipeline-parallel group that the rank is part of.

    If it is just part of one group, an int is returned, otherwise a list of ints.
    """
    assert _PIPELINE_GLOBAL_RANKS is not None, "Pipeline parallel group is not initialized"
    rank_in_pipeline = get_pipeline_model_parallel_rank()
    world_size = get_pipeline_model_parallel_world_size()
    if isinstance(_PIPELINE_GLOBAL_RANKS[0], list):
        to_return = []
        for group in _PIPELINE_GLOBAL_RANKS:
            to_return.append(group[(rank_in_pipeline - 1) % world_size])
        return to_return
    else:
        return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline - 1) % world_size]


def get_data_parallel_world_size(with_context_parallel=False, partial_data_parallel=False):
    """Return world size for the data parallel group."""
    global _MPU_DATA_PARALLEL_WORLD_SIZE
    if _MPU_DATA_PARALLEL_WORLD_SIZE is not None:
        return _MPU_DATA_PARALLEL_WORLD_SIZE
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_world_size(
            group=get_data_parallel_group(
                with_context_parallel=with_context_parallel,
                partial_data_parallel=partial_data_parallel,
            )
        )
    else:
        return 0


def set_data_parallel_rank(rank):
    """Return world size for the data parallel group."""
    global _MPU_DATA_PARALLEL_RANK
    _MPU_DATA_PARALLEL_RANK = rank


def get_data_parallel_rank(with_context_parallel=False, partial_data_parallel=False):
    """Return caller's rank in the data-parallel group."""
    global _MPU_DATA_PARALLEL_RANK
    if _MPU_DATA_PARALLEL_RANK is not None:
        return _MPU_DATA_PARALLEL_RANK
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_rank(
            group=get_data_parallel_group(
                with_context_parallel=with_context_parallel,
                partial_data_parallel=partial_data_parallel,
            )
        )
    else:
        return 0


def get_context_parallel_world_size():
    """Return world size for the context parallel group."""
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_world_size(group=get_context_parallel_group())
    else:
        return 0


def get_context_parallel_rank():
    """Return caller's rank in the context-parallel group."""
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_rank(group=get_context_parallel_group())
    else:
        return 0


def get_tensor_and_context_parallel_world_size():
    """Return world size for the tensor and context-parallel group."""
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_world_size(group=get_tensor_and_context_parallel_group())
    else:
        return 0


def get_tensor_and_context_parallel_rank():
    """Return caller's rank in the joint tensor-model-parallel and context-parallel group."""
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_rank(group=get_tensor_and_context_parallel_group())
    else:
        return 0


### Expert-related parallel states functions
def get_expert_model_parallel_group(check_initialized=True):
    """Get the expert-model-parallel group the caller rank belongs to."""
    if check_initialized:
        assert (
            _EXPERT_MODEL_PARALLEL_GROUP is not None
        ), 'expert model parallel group is not initialized'
    return _EXPERT_MODEL_PARALLEL_GROUP


def get_expert_model_parallel_world_size():
    """Return world size for the expert-model-parallel group."""
    if _MPU_EXPERT_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_EXPERT_MODEL_PARALLEL_WORLD_SIZE
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_world_size(group=get_expert_model_parallel_group())
    else:
        return 0


def set_expert_model_parallel_world_size(world_size):
    """Sets the expert-model-parallel world size."""
    global _MPU_EXPERT_MODEL_PARALLEL_WORLD_SIZE
    _MPU_EXPERT_MODEL_PARALLEL_WORLD_SIZE = world_size


def get_expert_model_parallel_rank():
    """Return caller's rank in the expert-model-parallel group."""
    if _MPU_EXPERT_MODEL_PARALLEL_RANK is not None:
        return _MPU_EXPERT_MODEL_PARALLEL_RANK
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_rank(group=get_expert_model_parallel_group())
    else:
        return 0


def set_expert_model_parallel_rank(rank):
    """Set expert-model-parallel rank."""
    global _MPU_EXPERT_MODEL_PARALLEL_RANK
    _MPU_EXPERT_MODEL_PARALLEL_RANK = rank


def get_expert_tensor_parallel_group(check_initialized=True):
    """Get the expert-tensor-parallel group the caller rank belongs to."""
    if check_initialized:
        assert (
            _EXPERT_TENSOR_PARALLEL_GROUP is not None
        ), 'Expert tensor parallel group is not initialized'
    return _EXPERT_TENSOR_PARALLEL_GROUP


def get_expert_tensor_parallel_world_size():
    """Return world size for the expert tensor parallel group."""
    global _MPU_EXPERT_TENSOR_PARALLEL_WORLD_SIZE
    if _MPU_EXPERT_TENSOR_PARALLEL_WORLD_SIZE is not None:
        return _MPU_EXPERT_TENSOR_PARALLEL_WORLD_SIZE
    # Use tensor parallel group world size for backward compability otherwise
    if not _EXPERT_TENSOR_PARALLEL_GROUP:
        return _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    else:
        return torch.distributed.get_world_size(group=get_expert_tensor_parallel_group())


def set_expert_tensor_parallel_world_size(world_size):
    "Set expert tensor model parallel size"
    global _MPU_EXPERT_TENSOR_PARALLEL_WORLD_SIZE
    _MPU_EXPERT_TENSOR_PARALLEL_WORLD_SIZE = world_size


def get_expert_tensor_parallel_rank():
    """Return my rank for the expert tensor parallel group."""
    global _MPU_EXPERT_TENSOR_PARALLEL_RANK
    if _MPU_EXPERT_TENSOR_PARALLEL_RANK is not None:
        return _MPU_EXPERT_TENSOR_PARALLEL_RANK
    # Use tensor parallel group rank for backward compability otherwise
    if not _EXPERT_TENSOR_PARALLEL_GROUP:
        return _MPU_TENSOR_MODEL_PARALLEL_RANK
    else:
        return torch.distributed.get_rank(group=get_expert_tensor_parallel_group())


def set_expert_tensor_parallel_rank(rank):
    "Set expert tensor model parallel rank"
    global _MPU_EXPERT_TENSOR_PARALLEL_RANK
    _MPU_EXPERT_TENSOR_PARALLEL_RANK = rank


def get_expert_tensor_and_model_parallel_group(check_initialized=True):
    """Get the expert-tensor and expert-model group the caller rank belongs to."""
    if check_initialized:
        assert (
            _EXPERT_TENSOR_AND_MODEL_PARALLEL_GROUP is not None
        ), 'Expert tensor and model parallel group is not initialized'
    return _EXPERT_TENSOR_AND_MODEL_PARALLEL_GROUP


def get_expert_tensor_and_model_parallel_world_size():
    """Return world size for the expert model parallel group times expert tensor parallel group."""
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        world_size = torch.distributed.get_world_size(
            group=get_expert_tensor_and_model_parallel_group()
        )
        return world_size
    else:
        return 0


def get_expert_tensor_and_model_parallel_rank():
    """Return caller's rank in the joint tensor- and expert-model-parallel group."""
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_rank(group=get_expert_tensor_and_model_parallel_group())
    else:
        return 0


def get_expert_tensor_model_pipeline_parallel_group():
    """Get expert tensor-model-pipeline parallel group."""
    assert (
        _EXPERT_TENSOR_MODEL_PIPELINE_PARALLEL_GROUP is not None
    ), 'Expert tensor-model-pipeline parallel group is not initialized'
    return _EXPERT_TENSOR_MODEL_PIPELINE_PARALLEL_GROUP


def get_expert_data_parallel_group():
    """Get expert data parallel group."""
    assert _EXPERT_DATA_PARALLEL_GROUP is not None, 'Expert data parallel group is not initialized'
    return _EXPERT_DATA_PARALLEL_GROUP


def get_data_modulo_expert_parallel_group():
    """[Deprecated] Get expert data parallel group."""
    warnings.warn(
        "get_data_modulo_expert_parallel_group is deprecated, please use "
        "get_expert_data_parallel_group instead.",
        DeprecationWarning,
    )
    return get_expert_data_parallel_group()


def get_expert_data_parallel_group_gloo():
    """Get expert data parallel group-gloo."""
    assert (
        _EXPERT_DATA_PARALLEL_GROUP_GLOO is not None
    ), 'Expert data parallel group-gloo is not initialized'
    return _EXPERT_DATA_PARALLEL_GROUP_GLOO


def get_expert_data_parallel_rank():
    """Return caller's rank in the expert data parallel group."""
    if torch.distributed.is_available() and torch.distributed.is_initialized():
        return torch.distributed.get_rank(group=get_expert_data_parallel_group())
    else:
        return 0


### End of expert-related functions region


def _set_global_memory_buffer():
    """Initialize global buffer."""
    global _GLOBAL_MEMORY_BUFFER
    assert _GLOBAL_MEMORY_BUFFER is None, 'global memory buffer is already initialized'
    _GLOBAL_MEMORY_BUFFER = GlobalMemoryBuffer()


def get_global_memory_buffer():
    """Return the global GlobalMemoryBuffer object"""
    assert _GLOBAL_MEMORY_BUFFER is not None, 'global memory buffer is not initialized'
    return _GLOBAL_MEMORY_BUFFER


def destroy_global_memory_buffer():
    """Sets the global memory buffer to None"""
    global _GLOBAL_MEMORY_BUFFER
    _GLOBAL_MEMORY_BUFFER = None


def get_all_ranks():
    """Get caller's rank in tensor-model-parallel, data-parallel, context-parallel,
    pipeline-model-parallel and expert-model-parallel groups."""
    ranks = [
        get_tensor_model_parallel_rank(),
        get_data_parallel_rank(),
        get_context_parallel_rank(),
        get_pipeline_model_parallel_rank(),
        get_expert_model_parallel_rank(),
    ]
    return '_'.join(map(lambda x: str(x or 0), ranks))


def get_moe_layer_wise_logging_tracker():
    """Return the moe layer wise tracker."""
    global _MOE_LAYER_WISE_LOGGING_TRACKER
    return _MOE_LAYER_WISE_LOGGING_TRACKER


def destroy_model_parallel():
    """Set the groups to none."""
    global _MODEL_PARALLEL_GROUP
    _MODEL_PARALLEL_GROUP = None

    global _TENSOR_MODEL_PARALLEL_GROUP
    _TENSOR_MODEL_PARALLEL_GROUP = None

    global _PIPELINE_MODEL_PARALLEL_GROUP
    _PIPELINE_MODEL_PARALLEL_GROUP = None

    global _PIPELINE_MODEL_PARALLEL_DECODER_START
    _PIPELINE_MODEL_PARALLEL_DECODER_START = None

    global _DATA_PARALLEL_GROUP
    _DATA_PARALLEL_GROUP = None

    global _DATA_PARALLEL_GROUP_WITH_CP
    _DATA_PARALLEL_GROUP_WITH_CP = None

    global _CONTEXT_PARALLEL_GROUP
    _CONTEXT_PARALLEL_GROUP = None

    global _CONTEXT_PARALLEL_GLOBAL_RANKS
    _CONTEXT_PARALLEL_GLOBAL_RANKS = None

    global _EMBEDDING_GROUP
    _EMBEDDING_GROUP = None

    global _POSITION_EMBEDDING_GROUP
    _POSITION_EMBEDDING_GROUP = None

    global _TENSOR_AND_DATA_PARALLEL_GROUP
    _TENSOR_AND_DATA_PARALLEL_GROUP = None

    global _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP
    _TENSOR_AND_DATA_PARALLEL_GROUP_WITH_CP = None

    global _TENSOR_AND_CONTEXT_PARALLEL_GROUP
    _TENSOR_AND_CONTEXT_PARALLEL_GROUP = None

    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None

    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None

    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None

    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None

    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    _MPU_TENSOR_MODEL_PARALLEL_RANK = None

    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    _MPU_PIPELINE_MODEL_PARALLEL_RANK = None

    global _GLOBAL_MEMORY_BUFFER
    _GLOBAL_MEMORY_BUFFER = None

    global _DATA_PARALLEL_GROUP_GLOO
    if (
        _DATA_PARALLEL_GROUP_GLOO is not None
        and torch.distributed.distributed_c10d._world.pg_map.get(_DATA_PARALLEL_GROUP_GLOO, None)
        is not None
    ):
        torch.distributed.destroy_process_group(_DATA_PARALLEL_GROUP_GLOO)
    _DATA_PARALLEL_GROUP_GLOO = None

    global _DATA_PARALLEL_GROUP_WITH_CP_GLOO
    if (
        _DATA_PARALLEL_GROUP_WITH_CP_GLOO is not None
        and torch.distributed.distributed_c10d._world.pg_map.get(
            _DATA_PARALLEL_GROUP_WITH_CP_GLOO, None
        )
        is not None
    ):
        torch.distributed.destroy_process_group(_DATA_PARALLEL_GROUP_WITH_CP_GLOO)
    _DATA_PARALLEL_GROUP_WITH_CP_GLOO = None

    # Destroy parallel state related to expert parallelism.
    global _EXPERT_MODEL_PARALLEL_GROUP
    _EXPERT_MODEL_PARALLEL_GROUP = None

    global _MPU_EXPERT_MODEL_PARALLEL_WORLD_SIZE
    _MPU_EXPERT_MODEL_PARALLEL_WORLD_SIZE = None

    global _MPU_EXPERT_MODEL_PARALLEL_RANK
    _MPU_EXPERT_MODEL_PARALLEL_RANK = None

    global _EXPERT_TENSOR_PARALLEL_GROUP
    _EXPERT_TENSOR_PARALLEL_GROUP = None

    global _MPU_EXPERT_TENSOR_PARALLEL_WORLD_SIZE
    _MPU_EXPERT_TENSOR_PARALLEL_WORLD_SIZE = None

    global _MPU_EXPERT_TENSOR_PARALLEL_RANK
    _MPU_EXPERT_TENSOR_PARALLEL_RANK = None

    global _EXPERT_TENSOR_AND_MODEL_PARALLEL_GROUP
    _EXPERT_TENSOR_AND_MODEL_PARALLEL_GROUP = None

    global _EXPERT_TENSOR_MODEL_PIPELINE_PARALLEL_GROUP
    _EXPERT_TENSOR_MODEL_PIPELINE_PARALLEL_GROUP = None

    global _EXPERT_DATA_PARALLEL_GROUP
    _EXPERT_DATA_PARALLEL_GROUP = None

    global _EXPERT_DATA_PARALLEL_GROUP_GLOO
    if (
        _EXPERT_DATA_PARALLEL_GROUP_GLOO is not None
        and torch.distributed.distributed_c10d._world.pg_map.get(
            _EXPERT_DATA_PARALLEL_GROUP_GLOO, None
        )
        is not None
    ):
        torch.distributed.destroy_process_group(_EXPERT_DATA_PARALLEL_GROUP_GLOO)
    _EXPERT_DATA_PARALLEL_GROUP_GLOO = None
    # End of expert parallelism destroy.

    global _MOE_LAYER_WISE_LOGGING_TRACKER
    _MOE_LAYER_WISE_LOGGING_TRACKER = {}