config.py 11.5 KB
Newer Older
silencealiang's avatar
silencealiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
from dataclasses import dataclass

import torch

from megatron.training.activations import fast_gelu, quick_gelu, squared_relu


def get_language_model_config(config):
    if config.language_model_type == "llama3_8b":
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
        config.ffn_hidden_size = 14336
    elif config.language_model_type == "llama3.1_8b":
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
        config.ffn_hidden_size = 14336
    elif config.language_model_type == "llama3.1_70B":
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
        config.ffn_hidden_size = 28672
    elif config.language_model_type == "mistral_7b":
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
        config.ffn_hidden_size = 14336
    elif config.language_model_type == "yi-34b":
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
        config.ffn_hidden_size = 20480
    elif config.language_model_type == "qwen2.5_7B":
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.add_qkv_bias = True
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
        config.ffn_hidden_size = 18944
    elif config.language_model_type == "qwen2.0_72B":
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.add_qkv_bias = True
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
        config.ffn_hidden_size = 29568
    elif config.language_model_type == "llama3.2_1b":
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
        config.ffn_hidden_size = 8192
    elif config.language_model_type.startswith("huggingface"):
        # Loaded from HuggingFace config file.
        pass
    else:
        raise ValueError(f"unknown language model type {config.language_model_type}")

    return config


def get_vision_model_config(config, apply_query_key_layer_scaling):
    if config.vision_model_type == "clip":
        config.num_layers = 24
        config.num_attention_heads = 16
        config.add_bias_linear = True
        config.add_qkv_bias = True
        config.hidden_size = 1024
        config.hidden_dropout = 0.0
        config.attention_dropout = 0.0
        config.ffn_hidden_size = 4096
        config.gated_linear_unit = False
        config.activation_func = quick_gelu
        config.kv_channels = 64
        config.num_query_groups = 16
        config.layernorm_zero_centered_gamma = False
        config.apply_query_key_layer_scaling = apply_query_key_layer_scaling
        config.bias_activation_fusion = False
        config.bias_dropout_fusion = False
        config.attention_softmax_in_fp32 = True
        config.normalization = 'LayerNorm'
        config.apply_rope_fusion = False
    elif config.vision_model_type == "siglip":
        config.num_layers = 27
        config.num_attention_heads = 16
        config.add_bias_linear = True
        config.add_qkv_bias = True
        config.hidden_size = 1152
        config.hidden_dropout = 0.0
        config.attention_dropout = 0.0
        config.ffn_hidden_size = 4304
        config.gated_linear_unit = False
        config.activation_func = fast_gelu
        config.kv_channels = 72
        config.num_query_groups = 16
        config.layernorm_zero_centered_gamma = False
        config.apply_query_key_layer_scaling = apply_query_key_layer_scaling
        config.bias_activation_fusion = False
        config.bias_dropout_fusion = False
        config.attention_softmax_in_fp32 = True
        config.normalization = 'LayerNorm'
        config.apply_rope_fusion = False
        config.qk_layernorm = False
        config.layernorm_epsilon = 1e-6
    elif config.vision_model_type == "internvit":
        config.num_layers = 45
        config.num_attention_heads = ((24 // config.tensor_model_parallel_size) + 1) * config.tensor_model_parallel_size
        config.num_query_groups = config.num_attention_heads
        config.add_bias_linear = True
        config.add_qkv_bias = False
        config.hidden_size = 3200
        config.hidden_dropout = 0.0
        config.attention_dropout = 0.0
        config.ffn_hidden_size = 12800
        config.gated_linear_unit = False
        config.activation_func = torch.nn.functional.gelu
        config.layernorm_zero_centered_gamma = False
        config.apply_query_key_layer_scaling = apply_query_key_layer_scaling
        config.bias_activation_fusion = False
        config.bias_dropout_fusion = False
        config.attention_softmax_in_fp32 = True
        config.normalization = 'RMSNorm'
        config.layernorm_epsilon = 1e-6
        config.apply_rope_fusion = False
    elif config.vision_model_type == "radio":
        config.num_layers = 32
        config.num_attention_heads = 16
        config.add_bias_linear = True
        config.add_qkv_bias = True
        config.hidden_size = 1280
        config.ffn_hidden_size = 5120
        config.gated_linear_unit = False
        config.activation_func = fast_gelu
        config.kv_channels = 80
        config.num_query_groups = 16
        config.layernorm_zero_centered_gamma = False
        config.apply_query_key_layer_scaling = apply_query_key_layer_scaling
        config.bias_activation_fusion = False
        config.bias_dropout_fusion = False
        config.attention_softmax_in_fp32 = True
        config.normalization = 'LayerNorm'
        config.apply_rope_fusion = False
        config.qk_layernorm = False
        config.layernorm_epsilon = 1e-6
    elif config.vision_model_type.startswith("huggingface"):
        # Loaded from HuggingFace config file.
        pass
    else:
        raise ValueError(f"unknown vision model type {config.vision_model_type}")

    return config


def get_vision_projection_config(config, hidden_size):
    config.gated_linear_unit = False
    config.bias_activation_fusion = False
    config.add_bias_linear = False
    config.hidden_size = hidden_size  # Used as the vision projection output size, i.e., the input to the language model.
    if config.language_model_type == "llama3_8b":
        config.ffn_hidden_size = 14336
        config.activation_func = torch.nn.functional.gelu
    elif config.language_model_type == "llama3.1_8b":
        config.ffn_hidden_size = 4096
        config.activation_func = torch.nn.functional.gelu
        config.layernorm_epsilon = 1e-5
        config.add_bias_linear = True
        config.normalization = "LayerNorm"
    elif config.language_model_type == "mistral_7b":
        config.ffn_hidden_size = 14336
        config.activation_func = torch.nn.functional.gelu
        config.normalization = None
    elif config.language_model_type == "yi-34b":
        config.ffn_hidden_size = 20480
        config.normalization = "LayerNorm"
        config.activation_func = torch.nn.functional.gelu
    elif config.language_model_type == "qwen2.5_7B":
        config.ffn_hidden_size = 3584
        config.activation_func = torch.nn.functional.gelu
    elif config.language_model_type == "qwen2.0_72B":
        config.ffn_hidden_size = 29568
        config.normalization = "LayerNorm"
        config.activation_func = torch.nn.functional.gelu
    elif config.language_model_type == "llama3.2_1b":
        config.ffn_hidden_size = 2048
        config.activation_func = torch.nn.functional.gelu
        config.normalization = "LayerNorm"
    elif config.language_model_type.startswith("huggingface"):
        config.activation_func = torch.nn.functional.gelu
        from transformers import AutoConfig
        hf_config = AutoConfig.from_pretrained(config.huggingface_model_name_or_path)
        if "qwen" in hf_config.model_type:
            config.ffn_hidden_size = 1536
    else:
        raise ValueError(f"unknown language model type {config.language_model_type}")

    return config


@dataclass
class EvaluationConfig:
    """Evaluation related configuration."""
    task: str

    temperature: float = 1.0
    top_p: float = 0.0
    top_k: int = 0

    out_seq_length: int = 32

    output_path: str = ""

    input_image_path: str = ""
    gt_path: str = ""

    num_partitions: int = 1
    partition_id: int = 0
    num_samples_per_partition: int = 0