gpt_batch_inference.py 7.31 KB
Newer Older
silencealiang's avatar
silencealiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
from megatron.core.inference.model_inference_wrappers.inference_wrapper_config import (
    InferenceWrapperConfig,
)
from pretrain_gpt import model_provider
import torch
import sys
import time
import tqdm
import warnings
from argparse import Namespace
from megatron.core.inference.engines.abstract_engine import AbstractEngine
from megatron.core.inference.engines.mcore_engine import MCoreEngine
from megatron.core.inference.sampling_params import SamplingParams
from megatron.core.inference.model_inference_wrappers.gpt.gpt_inference_wrapper import (
    GPTInferenceWrapper,
)
from megatron.core.inference.inference_request import InferenceRequest
from megatron.core.inference.text_generation_controllers.text_generation_controller import (
    TextGenerationController,
)
from megatron.core.transformer.module import MegatronModule

sys.path.append(
    os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir, os.path.pardir))
)

from megatron.training import get_args
from megatron.training import get_tokenizer
from megatron.training.checkpointing import load_checkpoint
from megatron.core import mpu
from megatron.training.initialize import initialize_megatron
from megatron.training import get_model
import asyncio
from typing import AsyncIterator, List



def add_text_generate_args(parser):
    """Text generation arguments."""
    group = parser.add_argument_group(title='text generation')

    group.add_argument("--temperature", type=float, default=1.0, help='Sampling temperature.')
    group.add_argument("--top_k", type=int, default=1, help='Top k sampling.')
    group.add_argument("--top_p", type=float, default=0.0, help='Top p sampling.')
    group.add_argument(
        "--return-log-probs",
        action='store_true',
        default=False,
        help='Return the log probabilities of the final output tokens',
    )
    group.add_argument(
        "--num-tokens-to-generate",
        type=int,
        default=30,
        help='Number of tokens to generate for each prompt',
    )
    group.add_argument(
        "--prompts",
        metavar='N',
        type=str,
        nargs='+',
        help='Input prompts with each prompt within quotes and seperated by space',
    )
    group.add_argument(
        "--max-batch-size", type=int, default=8, dest="inference_max_requests",
        help='Max number of prompts to process at once'
    )
    group.add_argument("--stream", action="store_true", default=False, help="Stream output tokens")
    return parser


def get_inference_engine(args: Namespace, model: MegatronModule) -> AbstractEngine:
    """Utility to get the relevant backend for running inference

    This function will automatically chose the TRTLLMBackend when possible, and if not revert to Mcore backend if the user does not specify any backends. TRT LLM Backend is not implmented yet.

    Args:
        args (Namespace): The user arguments parsed from command line
        model (MegatronModule): The megatron model .

    Returns:
        AbstractBackend: The chosen backend
    """
    tokenizer = get_tokenizer()

    inference_wrapper_config = InferenceWrapperConfig(
        hidden_size=args.hidden_size,
        inference_batch_times_seqlen_threshold=args.inference_batch_times_seqlen_threshold,
        fp32_residual_connection=args.fp32_residual_connection,
        params_dtype=args.params_dtype,
        padded_vocab_size=args.padded_vocab_size,
        inference_max_requests=args.inference_max_requests,
        inference_max_seq_length=args.inference_max_seq_length,
    )

    inference_wrapped_model = GPTInferenceWrapper(model, inference_wrapper_config)
    text_generation_controller = TextGenerationController(inference_wrapped_model=inference_wrapped_model, tokenizer=tokenizer)
    return MCoreEngine(text_generation_controller=text_generation_controller)


async def generate(
    inference_engine: MCoreEngine,
    sampling_params: SamplingParams,
    prompts: List[str],
) -> List[InferenceRequest]:
    async def collect_stream(prompt, request_id, stream_generator):
        print(f"Request {request_id}: {prompt}", end="", flush=True)
        prev_idx = 0
        async for output in stream_generator:
            print(output.generated_text[prev_idx:], end="", flush=True)
            prev_idx = len(output.generated_text)
        print()

    request_ids: List[str] = [
        inference_engine.add_request(
            prompt=prompt, inference_parameters=sampling_params, streaming=True
        )
        for prompt in prompts
    ]
    stream_generators = [inference_engine.get_stream_generator(request_id) for request_id in request_ids]

    tasks = [
        asyncio.create_task(collect_stream(prompt, request_id, stream_generator))
        for (prompt, request_id, stream_generator) in zip(prompts, request_ids, stream_generators)
    ]

    await inference_engine.run_engine_async()
    await asyncio.gather(*tasks)

    results: List[InferenceRequest] = [
        inference_engine.scheduler.completed_request_pool[request_id] for request_id in request_ids
    ]

    return results

def main():
    """Main program."""

    # Note: The default args passed here can be overwritten by using appropriate params (check arguments.py file)
    # Micro batch size is not needed to be set by user. (It is calculated based on inference-batch-times-seqlen-threshold argument)
    initialize_megatron(
        extra_args_provider=add_text_generate_args,
        args_defaults={
            'no_load_rng': True,
            'no_load_optim': True,
            'micro_batch_size': 1,
            'exit_on_missing_checkpoint': True,
        },
    )

    # Set up model and load checkpoint
    model = get_model(model_provider, wrap_with_ddp=False)
    load_checkpoint(model, None, None)
    model = model[0]

    args = get_args()

    inference_engine = get_inference_engine(args, model)

    sampling_params = SamplingParams(
        temperature=args.temperature,
        top_k=args.top_k,
        top_p=args.top_p,
        return_log_probs=args.return_log_probs,
        num_tokens_to_generate=args.num_tokens_to_generate,
    )

    if args.enable_cuda_graph:
        print(f"Running warmup for CUDA graphs...")
        inference_engine.generate(
                prompts=args.prompts, sampling_params=sampling_params
            )

    start_time = time.perf_counter()
    if args.stream:
        results: List[InferenceRequest] = asyncio.run(generate(inference_engine, sampling_params, args.prompts))
    else:
        results: List[InferenceRequest] = inference_engine.generate(
            prompts=args.prompts, sampling_params=sampling_params,
        )
    end_time = time.perf_counter()
    latency = end_time - start_time

    if torch.distributed.get_rank() == 0:
        for idx, result in enumerate(results):
            print(f' \n------------- RESULT FOR PROMPT {idx} --------------- ')
            result = {
                'id': result.request_id,
                'input_prompt': result.prompt,
                'generated_text': result.generated_text,
                'generated_tokens': result.generated_tokens,
                'latency': latency,
            }
            print(result)

    torch.distributed.destroy_process_group()

if __name__ == "__main__":
    main()