samplers.py 5.58 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""batch samplers that work with either random or sequential data samplers"""
import math
import os
import sys

import torch
from torch.utils import data
import numpy as np

Raul Puri's avatar
Raul Puri committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
class RandomSampler(data.sampler.Sampler):
    r"""
    Based off of pytorch RandomSampler and DistributedSampler. Essentially a RandomSampler,
    but this class lets the user set an epoch like DistributedSampler
    Samples elements randomly. If without replacement, then sample from a shuffled dataset.
    If with replacement, then user can specify ``num_samples`` to draw.
    Arguments:
        data_source (Dataset): dataset to sample from
        num_samples (int): number of samples to draw, default=len(dataset)
        replacement (bool): samples are drawn with replacement if ``True``, default=False
    """

    def __init__(self, data_source, replacement=False, num_samples=None):
        self.data_source = data_source
        self.replacement = replacement
        self._num_samples = num_samples
        self.epoch = -1

        if self._num_samples is not None and replacement is False:
            raise ValueError("With replacement=False, num_samples should not be specified, "
                             "since a random permute will be performed.")

        if not isinstance(self.num_samples, int) or self.num_samples <= 0:
            raise ValueError("num_samples should be a positive integer "
                             "value, but got num_samples={}".format(self.num_samples))
        if not isinstance(self.replacement, bool):
            raise ValueError("replacement should be a boolean value, but got "
                             "replacement={}".format(self.replacement))

    @property
    def num_samples(self):
        # dataset size might change at runtime
        if self._num_samples is None:
            return len(self.data_source)
        return self._num_samples

    def __iter__(self):
        n = len(self.data_source)
        g = torch.Generator()
        if self.epoch >= 0:
            g.manual_seed(self.epoch)
        if self.replacement:
            return iter(torch.randint(high=n, size=(self.num_samples,), dtype=torch.int64, generator=g).tolist())
        return iter(torch.randperm(n, generator=g).tolist())

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch

Raul Puri's avatar
Raul Puri committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
class DistributedBatchSampler(data.sampler.BatchSampler):
    """
    similar to normal implementation of distributed sampler, except implementation is at the
    batch sampler level, instead of just the sampler level. This allows wrapping of arbitrary
    data samplers (sequential, random, WeightedRandomSampler, etc.) with this batch sampler.
    """
    def __init__(self, sampler, batch_size, drop_last, rank=-1, world_size=2, wrap_last=False):
        super(DistributedBatchSampler, self).__init__(sampler, batch_size, drop_last)
        if rank == -1:
            rank = torch.distributed.get_rank()
        self.rank = rank
        self.world_size = world_size
        self.sampler.wrap_around = 0
        self.wrap_around = 0
        self.wrap_last = wrap_last
        self.start_iter = 0

    def __iter__(self):
        batch = []
        last_batch = None
        i = 0
        for idx in self.data_iterator(self.sampler, wrap_around=False):
            batch.append(idx)
            if len(batch) == self.batch_size:
                tbatch = self._batch(batch)
                if i >= self.start_iter:
                    yield tbatch
                    self.start_iter = 0
                i += 1
                last_batch = np.array(list(tbatch))
                batch = []
        batch_len = len(batch)
        if batch_len > 0 and not self.drop_last:
            if self.wrap_last:
                self.sampler.wrap_around -= (self.batch_size)
                self.wrap_around += (len(batch))
                self.wrap_around %= self.batch_size
                if isinstance(self.sampler, TransposedSampler):
                    for i, idx in enumerate(self.data_iterator(self.sampler, wrap_around=True)):
                        if i == 0:
                            continue
                        batch.append(idx)
                        new_batch_len = len(batch)
                        if len(batch) == self.batch_size:
                            break
            yield self._batch(batch)
        if self.wrap_last:
            self.sampler.wrap_around += self.batch_size

    def data_iterator(self, _iter, wrap_around=False):
        """iterates through data and handles wrap around"""
        for i, idx in enumerate(_iter):
            if i < self.wrap_around%self.batch_size:
                continue
            if wrap_around:
                self.wrap_around += 1
                self.wrap_around %= self.batch_size
            yield idx

    def _batch(self, batch):
        """extracts samples only pertaining to this worker's batch"""
        start = self.rank*self.batch_size//self.world_size
        end = (self.rank+1)*self.batch_size//self.world_size
        return batch[start:end]