realm_dataset_utils.py 7.43 KB
Newer Older
1
2
3
4
5
6
import os
import time

import numpy as np
import torch

7
from megatron import mpu, print_rank_0
8
from megatron.data.dataset_utils import create_masked_lm_predictions, pad_and_convert_to_numpy
9
from megatron import get_args, get_tokenizer, print_rank_0, mpu
10
11


Neel Kant's avatar
Neel Kant committed
12
13
14
15
16
17
18
19
20
21
22
23
24
def get_one_epoch_dataloader(dataset, batch_size=None):
    """Specifically one epoch to be used in an indexing job."""
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    if batch_size is None:
        batch_size = args.batch_size
    global_batch_size = batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    # importantly, drop_last must be False to get all the data.
mohammad's avatar
mohammad committed
25
26
    assert False, 'DistributedBatchSampler deprecated, change the implementation'
    from megatron.data.samplers import DistributedBatchSampler
Neel Kant's avatar
Neel Kant committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=False,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


def get_ict_batch(data_iterator):
    # Items and their type.
    keys = ['query_tokens', 'query_pad_mask',
            'block_tokens', 'block_pad_mask', 'block_data']
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is None:
        data = None
    else:
        data = next(data_iterator)
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    query_tokens = data_b['query_tokens'].long()
    query_pad_mask = data_b['query_pad_mask'].long()
    block_tokens = data_b['block_tokens'].long()
    block_pad_mask = data_b['block_pad_mask'].long()
    block_indices = data_b['block_data'].long()

    return query_tokens, query_pad_mask,\
           block_tokens, block_pad_mask, block_indices


63
64
65
66
67
68
69
70
71
72
73
def join_str_list(str_list):
    """Join a list of strings, handling spaces appropriately"""
    result = ""
    for s in str_list:
        if s.startswith("##"):
            result += s[2:]
        else:
            result += " " + s
    return result


74
75
class BlockSampleData(object):
    """A struct for fully describing a fixed-size block of data as used in REALM
76

77
78
79
80
81
82
83
84
85
86
    :param start_idx: for first sentence of the block
    :param end_idx: for last sentence of the block (may be partially truncated in sample construction)
    :param doc_idx: the index of the document from which the block comes in the original indexed dataset
    :param block_idx: a unique integer identifier given to every block.
    """
    def __init__(self, start_idx, end_idx, doc_idx, block_idx):
        self.start_idx = start_idx
        self.end_idx = end_idx
        self.doc_idx = doc_idx
        self.block_idx = block_idx
87

88
89
    def as_array(self):
        return np.array([self.start_idx, self.end_idx, self.doc_idx, self.block_idx]).astype(np.int64)
90

91
92
    def as_tuple(self):
        return self.start_idx, self.end_idx, self.doc_idx, self.block_idx
93
94


95
96
97
98
99
class BlockSamplesMapping(object):
    def __init__(self, mapping_array):
        # make sure that the array is compatible with BlockSampleData
        assert mapping_array.shape[1] == 4
        self.mapping_array = mapping_array
Neel Kant's avatar
Neel Kant committed
100
101
102

    def __len__(self):
        return self.mapping_array.shape[0]
103

104
    def __getitem__(self, idx):
Neel Kant's avatar
Neel Kant committed
105
        """Get the data associated with an indexed sample."""
Neel Kant's avatar
Neel Kant committed
106
        sample_data = BlockSampleData(*self.mapping_array[idx])
107
        return sample_data
108
109
110


def get_block_samples_mapping(block_dataset, title_dataset, data_prefix, num_epochs,
111
                              max_num_samples, max_seq_length, seed, name, use_one_sent_docs=False):
112
    """Get samples mapping for a dataset over fixed size blocks. This function also requires
113
    a dataset of the titles for the source documents since their lengths must be taken into account.
114

115
116
    :return: samples_mapping (BlockSamplesMapping)
    """
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

    if not num_epochs:
        if not max_num_samples:
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
    indexmap_filename += '_{}_indexmap'.format(name)
    if num_epochs != (np.iinfo(np.int32).max - 1):
        indexmap_filename += '_{}ep'.format(num_epochs)
    if max_num_samples != (np.iinfo(np.int64).max - 1):
        indexmap_filename += '_{}mns'.format(max_num_samples)
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{}s'.format(seed)
135
136
    if use_one_sent_docs:
        indexmap_filename += '_1sentok'
137
138
139
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
140
    if mpu.get_data_parallel_rank() == 0 and \
141
142
143
144
145
146
147
148
149
150
151
152
153
            not os.path.isfile(indexmap_filename):
        print(' > WARNING: could not find index map file {}, building '
              'the indices on rank 0 ...'.format(indexmap_filename))

        # Make sure the types match the helpers input types.
        assert block_dataset.doc_idx.dtype == np.int64
        assert block_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
        start_time = time.time()
        print_rank_0(' > building samples index mapping for {} ...'.format(
            name))
154
155

        # compile/bind the C++ helper code
156
157
        from megatron.data.dataset_utils import compile_helper
        compile_helper()
158

159
        from megatron.data import helpers
160
        mapping_array = helpers.build_blocks_mapping(
161
162
163
164
165
            block_dataset.doc_idx,
            block_dataset.sizes,
            title_dataset.sizes,
            num_epochs,
            max_num_samples,
166
            max_seq_length - 3,  # account for added tokens
167
            seed,
168
169
            verbose,
            use_one_sent_docs)
Neel Kant's avatar
Neel Kant committed
170

171

172
        print_rank_0(' > done building samples index mapping')
Neel Kant's avatar
Neel Kant committed
173
        np.save(indexmap_filename, mapping_array, allow_pickle=True)
174
175
176
177
178
179
        print_rank_0(' > saved the index mapping in {}'.format(
            indexmap_filename))
        # Make sure all the ranks have built the mapping
        print_rank_0(' > elapsed time to build and save samples mapping '
                     '(seconds): {:4f}'.format(
            time.time() - start_time))
180

181
182
183
184
185
    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
Neel Kant's avatar
Neel Kant committed
186
187
    assert counts[0].item() == torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())
188
189
190
191
192

    # Load indexed dataset.
    print_rank_0(' > loading indexed mapping from {}'.format(
        indexmap_filename))
    start_time = time.time()
Neel Kant's avatar
Neel Kant committed
193

Neel Kant's avatar
Neel Kant committed
194
    mapping_array = np.load(indexmap_filename, allow_pickle=True, mmap_mode='r')
Neel Kant's avatar
Neel Kant committed
195
196
    samples_mapping = BlockSamplesMapping(mapping_array)

197
198
199
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
Neel Kant's avatar
Neel Kant committed
200
        mapping_array.shape[0]))
201
202

    return samples_mapping