gpt2_dataset.py 14.8 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
"""GPT2 style dataset."""
Mohammad's avatar
Mohammad committed
17

18
import os
19
import time
Mohammad's avatar
Mohammad committed
20

21
import numpy as np
22
23
import torch

24
from megatron import mpu, print_rank_0
mohammad's avatar
mohammad committed
25
26
from megatron.data.blendable_dataset import BlendableDataset
from megatron.data.dataset_utils import get_datasets_weights_and_num_samples
Neel Kant's avatar
Neel Kant committed
27
from megatron.data.dataset_utils import get_train_valid_test_split_
28
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
29
30


31
32
33
def build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                    train_valid_test_num_samples,
                                    seq_length, seed, skip_warmup):
mohammad's avatar
mohammad committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    """Build train, valid, and test datasets."""

    # Single dataset.
    if len(data_prefix) == 1:
        return _build_train_valid_test_datasets(data_prefix[0],
                                                data_impl, splits_string,
                                                train_valid_test_num_samples,
                                                seq_length, seed, skip_warmup)

    # Blending dataset.
    # Parse the values.
    output = get_datasets_weights_and_num_samples(data_prefix,
                                                  train_valid_test_num_samples)
    prefixes, weights, datasets_train_valid_test_num_samples = output

    # Build individual datasets.
    train_datasets = []
    valid_datasets = []
    test_datasets = []
    for i in range(len(prefixes)):
        train_ds, valid_ds, test_ds = _build_train_valid_test_datasets(
            prefixes[i], data_impl, splits_string,
            datasets_train_valid_test_num_samples[i],
            seq_length, seed, skip_warmup)
        train_datasets.append(train_ds)
        valid_datasets.append(valid_ds)
        test_datasets.append(test_ds)

    # Blend.
    blending_train_dataset = BlendableDataset(train_datasets, weights)
    blending_valid_dataset = BlendableDataset(valid_datasets, weights)
    blending_test_dataset = BlendableDataset(test_datasets, weights)

    return (blending_train_dataset, blending_valid_dataset,
            blending_test_dataset)


def _build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                     train_valid_test_num_samples,
                                     seq_length, seed, skip_warmup):
74
75
76
77
78
79
80
81
82
83
84
85
    """Build train, valid, and test datasets."""

    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
                                           skip_warmup)

    total_num_of_documents = indexed_dataset.sizes.shape[0]
    splits = get_train_valid_test_split_(splits_string, total_num_of_documents)

    # Print stats about the splits.
    print_rank_0(' > dataset split:')
Neel Kant's avatar
Neel Kant committed
86

87
88
89
90
91
92
93
94
95
96
97
98
    def print_split_stats(name, index):
        print_rank_0('    {}:'.format(name))
        print_rank_0('     document indices in [{}, {}) total of {} '
                     'documents'.format(splits[index], splits[index + 1],
                                        splits[index + 1] - splits[index]))
    print_split_stats('train', 0)
    print_split_stats('validation', 1)
    print_split_stats('test', 2)

    def build_dataset(index, name):
        dataset = None
        if splits[index + 1] > splits[index]:
Neel Kant's avatar
Neel Kant committed
99
            documents = np.arange(start=splits[index], stop=splits[index + 1],
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
                                  step=1, dtype=np.int32)
            dataset = GPT2Dataset(name, data_prefix,
                                  documents, indexed_dataset,
                                  train_valid_test_num_samples[index],
                                  seq_length, seed)
        return dataset

    train_dataset = build_dataset(0, 'train')
    valid_dataset = build_dataset(1, 'valid')
    test_dataset = build_dataset(2, 'test')

    return (train_dataset, valid_dataset, test_dataset)


def get_indexed_dataset_(data_prefix, data_impl, skip_warmup):
    """Build indexed dataset."""
    print_rank_0(' > building dataset index ...')

    start_time = time.time()
    indexed_dataset = make_indexed_dataset(data_prefix,
                                           data_impl,
                                           skip_warmup)
    print_rank_0(' > finished creating indexed dataset in {:4f} '
                 'seconds'.format(time.time() - start_time))
    print_rank_0('    number of documents: {}'.format(
        indexed_dataset.sizes.shape[0]))

    return indexed_dataset


class GPT2Dataset(torch.utils.data.Dataset):

    def __init__(self, name, data_prefix, documents, indexed_dataset,
                 num_samples, seq_length, seed):

        self.name = name
        self.indexed_dataset = indexed_dataset

        # Checks
        assert np.min(documents) >= 0
        assert np.max(documents) < indexed_dataset.sizes.shape[0]

        # Build index mappings.
        self.doc_idx, self.sample_idx, self.shuffle_idx = _build_index_mappings(
            self.name, data_prefix, documents, self.indexed_dataset.sizes,
            num_samples, seq_length, seed)

147
    def __len__(self):
148
149
150
        # -1 is due to data structure used to retieve the index:
        #    sample i --> [sample_idx[i], sample_idx[i+1])
        return self.sample_idx.shape[0] - 1
151

152
    def __getitem__(self, idx):
153
154
155
156
        # Get the shuffled index.
        idx = self.shuffle_idx[idx]
        # Start and end documents and offsets.
        doc_index_f = self.sample_idx[idx][0]
Neel Kant's avatar
Neel Kant committed
157
        doc_index_l = self.sample_idx[idx + 1][0]
158
        offset_f = self.sample_idx[idx][1]
Neel Kant's avatar
Neel Kant committed
159
        offset_l = self.sample_idx[idx + 1][1]
160
161
162
163
164
165
166
167
168
169
        # If we are within the same document, just extract the chunk.
        if doc_index_f == doc_index_l:
            sample = self.indexed_dataset.get(self.doc_idx[doc_index_f],
                                              offset=offset_f,
                                              length=offset_l - offset_f + 1)
        else:
            # Otherwise, get the rest of the initial document.
            sample_list = [self.indexed_dataset.get(self.doc_idx[doc_index_f],
                                                    offset=offset_f)]
            # Loop over all in between documents and add the entire document.
Neel Kant's avatar
Neel Kant committed
170
            for i in range(doc_index_f + 1, doc_index_l):
171
172
173
174
                sample_list.append(self.indexed_dataset.get(self.doc_idx[i]))
            # And finally add the relevant portion of last document.
            sample_list.append(self.indexed_dataset.get(
                self.doc_idx[doc_index_l],
Neel Kant's avatar
Neel Kant committed
175
                length=offset_l + 1))
176
177
178
179
180
181
182
            sample = np.concatenate(sample_list)

        return {'text': np.array(sample, dtype=np.int64)}


def _build_index_mappings(name, data_prefix, documents, sizes,
                          num_samples, seq_length, seed):
183
184
185
186
187
188
    """Build doc-idx, sample-idx, and shuffle-idx.
    doc-idx: is an array (ordered) of documents to be used in training.
    sample-idx: is the start document index and document offset for each
       training sample.
    shuffle-idx: maps the sample index into a random index into sample-idx.
    """
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    # Number of tokens in each epoch and number of required epochs.
    tokens_per_epoch = _num_tokens(documents, sizes)
    num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples)
    # rng state
    np_rng = np.random.RandomState(seed=seed)

    # Filename of the index mappings.
    _filename = data_prefix
    _filename += '_{}_indexmap'.format(name)
    _filename += '_{}ns'.format(num_samples)
    _filename += '_{}sl'.format(seq_length)
    _filename += '_{}s'.format(seed)
    doc_idx_filename = _filename + '_doc_idx.npy'
    sample_idx_filename = _filename + '_sample_idx.npy'
    shuffle_idx_filename = _filename + '_shuffle_idx.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0:
        if (not os.path.isfile(doc_idx_filename)) or \
           (not os.path.isfile(sample_idx_filename)) or \
           (not os.path.isfile(shuffle_idx_filename)):

            print_rank_0(' > WARNING: could not find index map files, building '
                         'the indices on rank 0 ...')
            # doc-idx.
            start_time = time.time()
            doc_idx = _build_doc_idx(documents, num_epochs, np_rng)
            np.save(doc_idx_filename, doc_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save doc-idx mapping '
                         '(seconds): {:4f}'.format(time.time() - start_time))
            # sample-idx.
            start_time = time.time()
            # Use C++ implementation for speed.
222
223
224
            # First compile and then import.
            from megatron.data.dataset_utils import compile_helper
            compile_helper()
225
226
227
228
229
            from megatron.data import helpers
            assert doc_idx.dtype == np.int32
            assert sizes.dtype == np.int32
            sample_idx = helpers.build_sample_idx(sizes, doc_idx, seq_length,
                                                  num_epochs, tokens_per_epoch)
Neel Kant's avatar
Neel Kant committed
230
            # sample_idx = _build_sample_idx(sizes, doc_idx, seq_length,
231
232
233
234
235
236
            #                               num_epochs, tokens_per_epoch)
            np.save(sample_idx_filename, sample_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save sample-idx mapping '
                         '(seconds): {:4f}'.format(time.time() - start_time))
            # shuffle-idx.
            start_time = time.time()
237
238
            # -1 is due to data structure used to retieve the index:
            #    sample i --> [sample_idx[i], sample_idx[i+1])
Neel Kant's avatar
Neel Kant committed
239
            shuffle_idx = _build_shuffle_idx(sample_idx.shape[0] - 1, np_rng)
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
            np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save shuffle-idx mapping'
                         ' (seconds): {:4f}'.format(time.time() - start_time))

    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    assert counts[0].item() == torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())

    # Load mappings.
    start_time = time.time()
    print_rank_0(' > loading doc-idx mapping from {}'.format(
        doc_idx_filename))
Raul Puri's avatar
Raul Puri committed
256
    doc_idx = np.load(doc_idx_filename, allow_pickle=True, mmap_mode='r')
257
258
    print_rank_0(' > loading sample-idx mapping from {}'.format(
        sample_idx_filename))
Raul Puri's avatar
Raul Puri committed
259
    sample_idx = np.load(sample_idx_filename, allow_pickle=True, mmap_mode='r')
260
261
    print_rank_0(' > loading shuffle-idx mapping from {}'.format(
        shuffle_idx_filename))
Raul Puri's avatar
Raul Puri committed
262
    shuffle_idx = np.load(shuffle_idx_filename, allow_pickle=True, mmap_mode='r')
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
        sample_idx.shape[0]))
    print_rank_0('    total number of epochs: {}'.format(num_epochs))

    return doc_idx, sample_idx, shuffle_idx


def _num_tokens(documents, sizes):
    """Total number of tokens in the dataset."""
    return np.sum(sizes[documents])


def _num_epochs(tokens_per_epoch, seq_length, num_samples):
    """Based on number of samples and sequence lenght, calculate how many
    epochs will be needed."""
    num_epochs = 0
    total_tokens = 0
    while True:
        num_epochs += 1
        total_tokens += tokens_per_epoch
        # -1 is because we need to retrieve seq_length + 1 token each time
        # but the last token will overlap with the first token of the next
        # sample except for the last sample.
        if ((total_tokens - 1) // seq_length) >= num_samples:
            return num_epochs


def _build_doc_idx(documents, num_epochs, np_rng):
    """Build an array with length = number-of-epochs * number-of-dcuments.
    Each index is mapped to a corresponding document."""
    doc_idx = np.mgrid[0:num_epochs, 0:len(documents)][1]
    doc_idx[:] = documents
    doc_idx = doc_idx.reshape(-1)
    doc_idx = doc_idx.astype(np.int32)
    np_rng.shuffle(doc_idx)
    return doc_idx


def _build_sample_idx(sizes, doc_idx, seq_length,
                      num_epochs, tokens_per_epoch):
    """Sample index mapping is a 2D array with sizes
    [number-of-samples + 1, 2] where [..., 0] contains
Mohammad's avatar
Mohammad committed
307
    the index into `doc_idx` and [..., 1] is the
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    starting offset in that document."""

    # Total number of samples. For -1 see comments in `_num_epochs`.
    num_samples = (num_epochs * tokens_per_epoch - 1) // seq_length
    sample_idx = np.zeros([num_samples + 1, 2], dtype=np.int32)

    # Index into sample_idx.
    sample_index = 0
    # Index into doc_idx.
    doc_idx_index = 0
    # Begining offset for each document.
    doc_offset = 0
    # Start with first document and no offset.
    sample_idx[sample_index][0] = doc_idx_index
    sample_idx[sample_index][1] = doc_offset
    sample_index += 1
    while sample_index <= num_samples:
        # Start with a fresh sequence.
        remaining_seq_length = seq_length + 1
        while remaining_seq_length != 0:
            # Get the document length.
            doc_id = doc_idx[doc_idx_index]
            doc_length = sizes[doc_id] - doc_offset
            # And add it to the current sequence.
            remaining_seq_length -= doc_length
            # If we have more than a full sequence, adjust offset and set
            # remaining length to zero so we return from the while loop.
            # Note that -1 here is for the same reason we have -1 in
            # `_num_epochs` calculations.
            if remaining_seq_length <= 0:
                doc_offset += (remaining_seq_length + doc_length - 1)
                remaining_seq_length = 0
            else:
                # Otherwise, start from the begining of the next document.
                doc_idx_index += 1
                doc_offset = 0
        # Record the sequence.
        sample_idx[sample_index][0] = doc_idx_index
        sample_idx[sample_index][1] = doc_offset
        sample_index += 1

    return sample_idx


def _build_shuffle_idx(size, np_rng):
    """Build the range [0, size) and shuffle."""
    dtype_ = np.uint32
    if size >= (np.iinfo(np.uint32).max - 1):
        dtype_ = np.int64
    shuffle_idx = np.arange(start=0, stop=size, step=1, dtype=dtype_)
    np_rng.shuffle(shuffle_idx)
    return shuffle_idx