bert_dataset.py 11.2 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
16
"""BERT Style dataset."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
17

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
18
import os
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
19
20
21
22
23
24
import time

import numpy as np
import torch
from torch.utils.data import Dataset

Neel Kant's avatar
Neel Kant committed
25
from megatron import get_tokenizer, get_args
26
from megatron import mpu
27
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
28
29
30
31
32
from megatron.data.dataset_utils import get_a_and_b_segments
from megatron.data.dataset_utils import truncate_segments
from megatron.data.dataset_utils import create_tokens_and_tokentypes
from megatron.data.dataset_utils import pad_and_convert_to_numpy
from megatron.data.dataset_utils import create_masked_lm_predictions
33
from megatron import print_rank_0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
34

Neel Kant's avatar
Neel Kant committed
35

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
36
class BertDataset(Dataset):
37

38
    def __init__(self, name, indexed_dataset, data_prefix,
39
40
                 num_epochs, max_num_samples, masked_lm_prob,
                 max_seq_length, short_seq_prob, seed):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
42

        # Params to store.
43
        self.name = name
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
44
45
46
47
        self.seed = seed
        self.masked_lm_prob = masked_lm_prob
        self.max_seq_length = max_seq_length

48
        # Dataset.
49
50
        self.indexed_dataset = indexed_dataset

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
51
        # Build the samples mapping.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
52
53
54
55
56
57
        self.samples_mapping = get_samples_mapping_(self.indexed_dataset,
                                                    data_prefix,
                                                    num_epochs,
                                                    max_num_samples,
                                                    self.max_seq_length,
                                                    short_seq_prob,
58
59
                                                    self.seed,
                                                    self.name)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
60
61

        # Vocab stuff.
62
63
64
65
66
67
68
        tokenizer = get_tokenizer()
        self.vocab_id_list = list(tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_dict = tokenizer.inv_vocab
        self.cls_id = tokenizer.cls
        self.sep_id = tokenizer.sep
        self.mask_id = tokenizer.mask
        self.pad_id = tokenizer.pad
69

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
70
    def __len__(self):
71
        return self.samples_mapping.shape[0]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
72
73

    def __getitem__(self, idx):
74
75
        start_idx, end_idx, seq_length = self.samples_mapping[idx]
        sample = [self.indexed_dataset[i] for i in range(start_idx, end_idx)]
76
77
78
        # Note that this rng state should be numpy and not python since
        # python randint is inclusive whereas the numpy one is exclusive.
        np_rng = np.random.RandomState(seed=(self.seed + idx))
79
80
81
82
83
84
85
        return build_training_sample(sample, seq_length,
                                     self.max_seq_length,  # needed for padding
                                     self.vocab_id_list,
                                     self.vocab_id_to_token_dict,
                                     self.cls_id, self.sep_id,
                                     self.mask_id, self.pad_id,
                                     self.masked_lm_prob, np_rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
86

87

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
88
def get_indexed_dataset_(data_prefix, data_impl, skip_warmup):
89
90
91

    print_rank_0(' > building dataset index ...')

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
92
93
94
95
    start_time = time.time()
    indexed_dataset = make_indexed_dataset(data_prefix,
                                           data_impl,
                                           skip_warmup)
96
97
98
99
100
101
102
103
104
105
    assert indexed_dataset.sizes.shape[0] == indexed_dataset.doc_idx[-1]
    print_rank_0(' > finished creating indexed dataset in {:4f} '
                 'seconds'.format(time.time() - start_time))

    print_rank_0(' > indexed dataset stats:')
    print_rank_0('    number of documents: {}'.format(
        indexed_dataset.doc_idx.shape[0] - 1))
    print_rank_0('    number of sentences: {}'.format(
        indexed_dataset.sizes.shape[0]))

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
106
107
108
    return indexed_dataset


109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def get_train_valid_test_split_(splits_string, size):
    """ Get dataset splits from comma or '/' separated string list."""

    splits = []
    if splits_string.find(',') != -1:
        splits = [float(s) for s in splits_string.split(',')]
    elif splits_string.find('/') != -1:
        splits = [float(s) for s in splits_string.split('/')]
    else:
        splits = [float(splits_string)]
    while len(splits) < 3:
        splits.append(0.)
    splits = splits[:3]
    splits_sum = sum(splits)
    assert splits_sum > 0.0
Neel Kant's avatar
Neel Kant committed
124
    splits = [split / splits_sum for split in splits]
125
126
127
128
129
130
131
132
133
134
135
136
    splits_index = [0]
    for index, split in enumerate(splits):
        splits_index.append(splits_index[index] +
                            int(round(split * float(size))))
    diff = splits_index[-1] - size
    for index in range(1, len(splits_index)):
        splits_index[index] -= diff
    assert len(splits_index) == 4
    assert splits_index[-1] == size
    return splits_index


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
137
138
139
140
141
142
def get_samples_mapping_(indexed_dataset,
                         data_prefix,
                         num_epochs,
                         max_num_samples,
                         max_seq_length,
                         short_seq_prob,
143
144
                         seed,
                         name):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
145
    if not num_epochs:
146
        if not max_num_samples:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
147
148
149
150
151
152
153
154
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
155
156
157
158
159
    indexmap_filename += '_{}_indexmap'.format(name)
    if num_epochs != (np.iinfo(np.int32).max - 1):
        indexmap_filename += '_{}ep'.format(num_epochs)
    if max_num_samples != (np.iinfo(np.int64).max - 1):
        indexmap_filename += '_{}mns'.format(max_num_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
160
161
162
163
164
165
166
167
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{:0.2f}ssp'.format(short_seq_prob)
    indexmap_filename += '_{}s'.format(seed)
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0 and \
       not os.path.isfile(indexmap_filename):
168
        print(' > WARNING: could not find index map file {}, building '
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
169
              'the indices on rank 0 ...'.format(indexmap_filename))
170

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
171
172
173
174
175
176
        # Make sure the types match the helpers input types.
        assert indexed_dataset.doc_idx.dtype == np.int64
        assert indexed_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
177
        start_time = time.time()
178
179
        print_rank_0(' > building sapmles index mapping for {} ...'.format(
            name))
180
181
182
        # First compile and then import.
        from megatron.data.dataset_utils import compile_helper
        compile_helper()
Mohammad's avatar
Mohammad committed
183
        from megatron.data import helpers
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
184
185
186
187
188
        samples_mapping = helpers.build_mapping(
            indexed_dataset.doc_idx,
            indexed_dataset.sizes,
            num_epochs,
            max_num_samples,
Neel Kant's avatar
Neel Kant committed
189
            max_seq_length - 3,  # account for added tokens
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
190
191
192
            short_seq_prob,
            seed,
            verbose)
193
        print_rank_0(' > done building sapmles index maping')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
194
        np.save(indexmap_filename, samples_mapping, allow_pickle=True)
195
196
        print_rank_0(' > saved the index mapping in {}'.format(
            indexmap_filename))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
197
        # Make sure all the ranks have built the mapping
198
        print_rank_0(' > elasped time to build and save samples mapping '
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
199
200
                     '(seconds): {:4f}'.format(
                         time.time() - start_time))
201
202
203
204
205
206
207
    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    assert counts[0].item() == torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
208
209

    # Load indexed dataset.
210
    print_rank_0(' > loading indexed mapping from {}'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
211
212
213
        indexmap_filename))
    start_time = time.time()
    samples_mapping = np.load(indexmap_filename, allow_pickle=True)
214
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
215
        time.time() - start_time))
216
    print_rank_0('    total number of samples: {}'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
217
        samples_mapping.shape[0]))
218

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
219
    return samples_mapping
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282


def build_training_sample(sample,
                          target_seq_length, max_seq_length,
                          vocab_id_list, vocab_id_to_token_dict,
                          cls_id, sep_id, mask_id, pad_id,
                          masked_lm_prob, np_rng):
    """Biuld training sample.

    Arguments:
        sample: A list of sentences in which each sentence is a list token ids.
        target_seq_length: Desired sequence length.
        max_seq_length: Maximum length of the sequence. All values are padded to
            this length.
        vocab_id_list: List of vocabulary ids. Used to pick a random id.
        vocab_id_to_token_dict: A dictionary from vocab ids to text tokens.
        cls_id: Start of example id.
        sep_id: Separator id.
        mask_id: Mask token id.
        pad_id: Padding token id.
        masked_lm_prob: Probability to mask tokens.
        np_rng: Random number genenrator. Note that this rng state should be
              numpy and not python since python randint is inclusive for
              the opper bound whereas the numpy one is exclusive.
    """

    # We assume that we have at least two sentences in the sample
    assert len(sample) > 1
    assert target_seq_length <= max_seq_length

    # Divide sample into two segments (A and B).
    tokens_a, tokens_b, is_next_random = get_a_and_b_segments(sample, np_rng)

    # Truncate to `target_sequence_length`.
    max_num_tokens = target_seq_length
    truncated = truncate_segments(tokens_a, tokens_b, len(tokens_a),
                                  len(tokens_b), max_num_tokens, np_rng)

    # Build tokens and toketypes.
    tokens, tokentypes = create_tokens_and_tokentypes(tokens_a, tokens_b,
                                                      cls_id, sep_id)

    # Masking.
    max_predictions_per_seq = masked_lm_prob * max_num_tokens
    (tokens, masked_positions, masked_labels, _) = create_masked_lm_predictions(
        tokens, vocab_id_list, vocab_id_to_token_dict, masked_lm_prob,
        cls_id, sep_id, mask_id, max_predictions_per_seq, np_rng)

    # Padding.
    tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np \
        = pad_and_convert_to_numpy(tokens, tokentypes, masked_positions,
                                   masked_labels, pad_id, max_seq_length)

    train_sample = {
        'text': tokens_np,
        'types': tokentypes_np,
        'labels': labels_np,
        'is_random': int(is_next_random),
        'loss_mask': loss_mask_np,
        'padding_mask': padding_mask_np,
        'truncated': int(truncated)}
    return train_sample