arguments.py 18.7 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20
21

import argparse
import os


22
23
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
24
    """Parse all arguments."""
25
26
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
27

Mohammad's avatar
Mohammad committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
44

Mohammad's avatar
Mohammad committed
45
    # Parse.
46
47
48
49
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
50

Mohammad's avatar
Mohammad committed
51
52
53
54
55
56
57
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
    args.model_parallel_size = min(args.model_parallel_size, args.world_size)
    if args.rank == 0:
        print('using world size: {} and model-parallel size: {} '.format(
            args.world_size, args.model_parallel_size))
Mohammad's avatar
Mohammad committed
58

Mohammad's avatar
Mohammad committed
59
60
61
62
    # Fp16 loss scaling.
    args.dynamic_loss_scale = False
    if args.loss_scale is None:
        args.dynamic_loss_scale = True
Mohammad's avatar
Mohammad committed
63

Mohammad's avatar
Mohammad committed
64
65
    # Set input defaults.
    for key in defaults:
Mohammad's avatar
Mohammad committed
66
67
68
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
Raul Puri's avatar
Raul Puri committed
69
        if getattr(args, key) is not None:
Raul Puri's avatar
Raul Puri committed
70
            if args.rank == 0:
Raul Puri's avatar
Raul Puri committed
71
72
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
Raul Puri's avatar
Raul Puri committed
73
74
                                               v2=getattr(args, key)),
                                               flush=True)
Raul Puri's avatar
Raul Puri committed
75
76
        else:
            setattr(args, key, defaults[key])
Mohammad's avatar
Mohammad committed
77

78
    # Check required arguments.
Mohammad's avatar
Mohammad committed
79
80
81
82
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
    for req_arg in required_args: 
        _check_arg_is_not_none(args, req_arg)
83

Mohammad's avatar
Mohammad committed
84
85
    # Checks.
    assert args.hidden_size % args.num_attention_heads == 0
Mohammad's avatar
Mohammad committed
86
87
88
89
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
90
91
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
92
93
94
95
96
97
98
99
    # Parameters sharing does not work with torch DDP.
    if (args.num_unique_layers is not None) and (args.num_layers is not None):
        assert args.num_unique_layers <= args.num_layers
        assert args.num_layers % args.num_unique_layers == 0, \
            'num-layers should be divisible by num-unique-layers.'
        if args.num_unique_layers < args.num_layers:
            assert args.DDP_impl == 'local', \
                'torch-DDP does not work with parameters sharing.'
Mohammad's avatar
Mohammad committed
100

Mohammad's avatar
Mohammad committed
101
102
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
103
104


Mohammad's avatar
Mohammad committed
105
106
107
108
109
110
111
112
113
114
115
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
        print('-------------------- arguments --------------------', flush=True)
        str_list = []
        for arg in vars(args):
            dots = '.' * (32 - len(arg))
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
        print('---------------- end of arguments ----------------', flush=True)
Mohammad's avatar
Mohammad committed
116
117


118
119
120
121
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
122
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
123
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
124

125
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
126
                       help='Number of transformer layers.')
Mohammad's avatar
Mohammad committed
127
128
129
130
    group.add_argument('--num-unique-layers', type=int, default=None,
                       help='Number of unique transformer layers. '
                       '`num-layers` should be divisible by this value.')
    group.add_argument('--param-sharing-style', default='grouped',
mohammad's avatar
mohammad committed
131
                       choices=['grouped', 'spaced'],
Mohammad's avatar
Mohammad committed
132
133
134
135
136
                       help='Ordering of the shared parameters. For example, '
                       'for a `num-layers`=4 and `--num-unique-layers`=2, '
                       'we will have the following ordering for two unique '
                       'layers 1 and 2: '
                       '    grouped: [1, 2, 1, 2] and spaced: [1, 1, 2, 2].')
137
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
138
                       help='Tansformer hidden size.')
139
140
    group.add_argument('--ict-head-size', type=int, default=None,
                       help='Size of block embeddings to be used in ICT and REALM (paper default: 128)')
141
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
142
                       help='Number of transformer attention heads.')
143
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
144
145
146
147
148
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
149
150
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
151
152
153
154
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
155
156
157
158
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
Mohammad's avatar
Mohammad committed
159

Mohammad's avatar
Mohammad committed
160
161
162
    return parser


Mohammad's avatar
Mohammad committed
163
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
164
165
166
167
168
169
170
171
172
173
174
175
176
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
                       help='Post attention dropout ptobability.')
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')

    return parser

Mohammad's avatar
Mohammad committed
177
178

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
179
180
    group = parser.add_argument_group(title='training')

Mohammad's avatar
Mohammad committed
181
    group.add_argument('--batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
182
183
184
185
186
187
188
189
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
                       'parallel size.')
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing.')
Mohammad's avatar
Mohammad committed
190
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
191
192
193
194
195
196
197
198
199
200
201
202
203
                       help='Total number of iterations to train over all '
                       'training runs.')
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')

    return parser


Mohammad's avatar
Mohammad committed
204
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
205
206
207
208
209
210
211
212
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
Mohammad's avatar
Mohammad committed
213

Mohammad's avatar
Mohammad committed
214
215
216
    return parser


Mohammad's avatar
Mohammad committed
217
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
218
219
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
220
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
                       choices=['constant', 'linear', 'cosine', 'exponential'],
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--warmup', type=float, default=0.01,
                       help='Percentage of total iterations to warmup on '
                       '(.01 = 1 percent of all training iters).')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
251
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
252
253
254
255
256
257
258
259
260
261
262
263
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
    group.add_argument('--no-save-optim', action='store_true',
                       help='Do not save current optimizer.')
    group.add_argument('--no-save-rng', action='store_true',
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Neel Kant's avatar
Neel Kant committed
264
265
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
266
    group.add_argument('--bert-load', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
267
                       help='Directory containing an BertModel checkpoint (needed to start ICT and REALM)')
Mohammad's avatar
Mohammad committed
268
269
270
271
272
273
274
275
276
277
278
279
    group.add_argument('--no-load-optim', action='store_true',
                       help='Do not load optimizer when loading checkpoint.')
    group.add_argument('--no-load-rng', action='store_true',
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
280
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
281
282
283
284
285
286
287
288
289
290
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
    group.add_argument('--apply-query-key-layer-scaling', action='store_true',
                       help='Scale Q * K^T by 1 / layer-number. If this flag '
                       'is set, then it will automatically set '
                       'attention-softmax-in-fp32 to true')
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
                       help='Run attention masking and softmax in fp32.')
Mohammad's avatar
Mohammad committed
291
292
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='All-reduce in fp32')
Mohammad's avatar
Mohammad committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--min-scale', type=float, default=1,
                       help='Minimum loss scale for dynamic loss scale.')

    return parser


Mohammad's avatar
Mohammad committed
307
def _add_distributed_args(parser):
Mohammad's avatar
Mohammad committed
308
309
    group = parser.add_argument_group(title='mixed precision')

Mohammad's avatar
Mohammad committed
310
311
    group.add_argument('--model-parallel-size', type=int, default=1,
                       help='Size of the model parallel.')
Mohammad's avatar
Mohammad committed
312
313
314
315
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
316
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
317
318
319
320
321
322
323
324
                       help='which DistributedDataParallel implementation '
                       'to use.')
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')

    return parser


Mohammad's avatar
Mohammad committed
325
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
326
327
328
329
330
331
332
333
334
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
335
336
337
    return parser


Mohammad's avatar
Mohammad committed
338
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
339
340
    group = parser.add_argument_group(title='data and dataloader')

Mohammad's avatar
Mohammad committed
341
    group.add_argument('--data-path', type=str, default=None,
Mohammad's avatar
Mohammad committed
342
                       help='Path to combined dataset to split.')
Neel Kant's avatar
Neel Kant committed
343
344
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
Mohammad's avatar
Mohammad committed
345
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
346
347
348
349
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
                       '`90,5,5` will use 90% of data for training, 5% for '
                       'validation and 5% for test.')
Mohammad's avatar
Mohammad committed
350
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
351
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
352
353
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
Mohammad's avatar
Mohammad committed
354
    group.add_argument('--seq-length', type=int, default=None,
Mohammad's avatar
Mohammad committed
355
356
357
358
359
360
361
362
363
                       help="Maximum sequence length to process.")
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
364
365
366
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
367
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
368
369
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
370
371
372
373
374
375
376
377
378
379
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Neel Kant's avatar
Neel Kant committed
380
381
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
                       help='Probability of keeping query in block for ICT dataset')
Mohammad's avatar
Mohammad committed
382

Mohammad's avatar
Mohammad committed
383
384
    return parser

Raul Puri's avatar
Raul Puri committed
385

Mohammad's avatar
Mohammad committed
386
387
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
388

Mohammad's avatar
Mohammad committed
389
390
391
392
393
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
394

Mohammad's avatar
Mohammad committed
395
    return parser