Llama_pretraining.sh 5.49 KB
Newer Older
wxj's avatar
wxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/bin/bash
set -eux

#export FLASH_ATTENTION_PRINT_PARAM=1
# Runs the "7B" parameter model
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export NCCL_P2P_LEVEL=PXB # SYS

#export HIP_ALLOC_INITIALIZE=0
#export GPU_MAX_HW_QUEUES=20

export NCCL_ALGO=Ring
export NCCL_NCHANNELS_PER_PEER=16
export NCCL_MIN_NCHANNELS=20
export NCCL_IB_TIMEOUT=22
export CUDA_DEVICE_MAX_CONNECTIONS=1

export NCCL_IB_HCA=mlx5_1,mlx5_2
export NCCL_NET_GDR_LEVEL=SYS
export NCCL_NET_GDR_READ=0
wxj's avatar
wxj committed
22
export GLOG_minloglevel=3 # 打印error级别的nccl日志
wxj's avatar
wxj committed
23
source /opt/dtk/env.sh
wxj's avatar
wxj committed
24
# 导入hipblaslt库
wxj's avatar
wxj committed
25
# export LD_LIBRARY_PATH=/data/hipblaslt-install-0904/lib:$LD_LIBRARY_PATH 
wxj's avatar
wxj committed
26
# 更新rocblas
wxj's avatar
wxj committed
27
28
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1211/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1228/lib:$LD_LIBRARY_PATH
wxj's avatar
wxj committed
29

wxj's avatar
wxj committed
30
31
32
33
# torch控制多流转单流
# export ALLREDUCE_STREAM_WITH_COMPUTE=1

# prof采集添加同步, 避免卡顿
wxj's avatar
wxj committed
34
35
# export GPU_FLUSH_ON_EXECUTION=1
# export HIP_DIRECT_DISPATCH=0
wxj's avatar
wxj committed
36

wxj's avatar
wxj committed
37
38
39
40
41
# 采集rocblas size
# export ROCBLAS_LAYER=3
# 采集 fa size
# export FLASH_ATTENTION_PRINT_PARAM=1

wxj's avatar
wxj committed
42
43
CHECKPOINT_PATH=./tmp_7b #$1 #<Specify path>
TENSORBOARD_LOGS_PATH=./tmp_7b  #$2 #<Specify path>
wxj's avatar
wxj committed
44
DATA_PATH="/data/datasets/nemo_pretrain/oscar-1GB/oscar-1GB-llama_text_document" #<Specify path and file prefix>_text_document
wxj's avatar
wxj committed
45
46

GPT_MODEL_ARGS=(
wxj's avatar
wxj committed
47
    --num-layers 32
wxj's avatar
wxj committed
48
49
50
51
    --hidden-size 4096
    --ffn-hidden-size 11008 
    --num-attention-heads 32
    --max-position-embeddings 4096
wxj's avatar
wxj committed
52
53
54
55

    --normalization RMSNorm 
    --position-embedding-type rope
    --untie-embeddings-and-output-weights # 分开处理embed和输出权重, 增加灵活性
wxj's avatar
wxj committed
56
57
)

wxj's avatar
wxj committed
58
59
# export NVTE_FLASH_ATTN=1 # 走cutlass
export NVTE_FLASH_ATTN_TRITON=1 # 走triton_fa
wxj's avatar
wxj committed
60
# --transformer-impl transformer_engine # 走core用这两组参数
wxj's avatar
wxj committed
61
    # --use-mcore-models
wxj's avatar
wxj committed
62
    # --transformer-impl local # 走legacy用这两组参数
wxj's avatar
wxj committed
63
    # --use-legacy-models 
wxj's avatar
wxj committed
64
TRAINING_ARGS=(
wxj's avatar
wxj committed
65
66
67
68
    --transformer-impl local # 走legacy用这两组参数
    --use-legacy-models 
    --micro-batch-size 1
    --global-batch-size 60 #240 #60 #512 #64
wxj's avatar
wxj committed
69
    --train-iters 10
wxj's avatar
wxj committed
70
71
72
73
74
75
    --weight-decay 0.1 
    --adam-beta1 0.9 
    --adam-beta2 0.95 
    --init-method-std 0.006 
    --clip-grad 1.0 
    --bf16
wxj's avatar
wxj committed
76
77
    # --fp16 # 开启fp16需要指定loss-scale
    # --loss-scale 1024
wxj's avatar
wxj committed
78
79
80
81
82
83
84
85
86
87
    --use-distributed-optimizer 
    --disable-bias-linear
    --attention-dropout 0
    --hidden-dropout 0
    --no-gradient-accumulation-fusion
    --swiglu
    --lr 3.0e-5 
    --lr-decay-style cosine 
    --min-lr 3.0e-6
    --lr-warmup-iters 1
wxj's avatar
wxj committed
88
    --ckpt-format torch
wxj's avatar
wxj committed
89
    --ddp-average-in-collective # 在dp阶段通信中, 梯度或参数将被直接平均, 而不是先求和(到一个设备)再平均
wxj's avatar
wxj committed
90
91
92
    # --recompute-granularity full # 开启重计算降低显存增加耗时
    # --recompute-num-layers 5 #0 #
    # --recompute-method block
wxj's avatar
wxj committed
93
94
95
    --overlap-grad-reduce # 重叠ddp grad reduce
    # --tp-comm-overlap # tensor parallel comm和gemm重叠, 优化项未适配
    # --tp-comm-overlap-rs-dgrad # reduce-scatter和dgrad gemm重叠, 优化项未适配
wxj's avatar
wxj committed
96
    --use-flash-attn-triton
wxj's avatar
wxj committed
97
)
wxj's avatar
wxj committed
98
99
# --use-flash-attn-cutlass # cutlass fa
# --use-flash-attn-triton # triton fa
wxj's avatar
wxj committed
100
101
102
103

MODEL_PARALLEL_ARGS=(
    --sequence-parallel
	--tensor-model-parallel-size 2
wxj's avatar
wxj committed
104
	--pipeline-model-parallel-size 2
wxj's avatar
wxj committed
105
106
107
108
)

DATA_ARGS=(
    --data-path $DATA_PATH 
wxj's avatar
wxj committed
109
    --seq-length 4096 #4096
wxj's avatar
wxj committed
110
111
    --split 949,50,1
    --tokenizer-type Llama2Tokenizer
wxj's avatar
wxj committed
112
    --tokenizer-model /data/model_weights/llama2_7b_hf/tokenizer.model
wxj's avatar
wxj committed
113
114
115
116
117
118
119
120
121
122
123
124
125
)

EVAL_AND_LOGGING_ARGS=(
    --log-interval 1
    --log-throughput
    --save-interval 1000 
    --eval-interval 1000 
    --save $CHECKPOINT_PATH 
    --load $CHECKPOINT_PATH 
    --eval-iters 10
    --tensorboard-dir $TENSORBOARD_LOGS_PATH 
)

wxj's avatar
wxj committed
126
127
128
129
130
PROFILE_ARGS=(
    --profile
    --profile-step-start 4
    --profile-step-end 5
    --use-pytorch-profiler
wxj's avatar
wxj committed
131
    --profile-ranks 0 1 2 3 4 5 6 7
wxj's avatar
wxj committed
132
133
134
    --profile-dir prof_data
)

wxj's avatar
wxj committed
135
136
137
138
RANK=$OMPI_COMM_WORLD_RANK
LOCAL_RANK=$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE
DIST_URL=${1}
wxj's avatar
wxj committed
139
DIST_PORT=34567
wxj's avatar
wxj committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

DISTRIBUTED_ARGS=(
    --rank ${RANK}
    --world-size ${WORLD_SIZE}
    --local-rank ${LOCAL_RANK}
    --dist-url tcp://${DIST_URL}:${DIST_PORT}
)

APP="python -u pretrain_gpt.py \
        ${GPT_MODEL_ARGS[@]} \
        ${TRAINING_ARGS[@]} \
        ${MODEL_PARALLEL_ARGS[@]} \
        ${DATA_ARGS[@]} \
        ${EVAL_AND_LOGGING_ARGS[@]} \
        ${DISTRIBUTED_ARGS[@]} \
wxj's avatar
wxj committed
155
        
wxj's avatar
wxj committed
156
"
wxj's avatar
wxj committed
157
158
# 开启profile
# ${PROFILE_ARGS[@]} \
wxj's avatar
wxj committed
159

wxj's avatar
wxj committed
160
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 #  # 4,5,6,7 #,
wxj's avatar
wxj committed
161
# export CUDA_VISIBLE_DEVICES=4,5,6,7 # 0,1,2,3,
wxj's avatar
wxj committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
${APP}
# case ${LOCAL_RANK} in
# [0])
# #   export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
#   ${APP}
#   # numactl --cpunodebind=0 --membind=0 ${APP}
#   ;;
# [1])
# #   export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
#   ${APP}
#   # numactl --cpunodebind=0 --membind=0 ${APP}
#   ;;
# [2])
# #   export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
#   ${APP}
#   # numactl --cpunodebind=0 --membind=0 ${APP}
#   ;;
# [3])
# #   export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
#   ${APP}
#   # numactl --cpunodebind=0 --membind=0 ${APP}
#   ;;
# [4])
wxj's avatar
wxj committed
185
#   export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
wxj's avatar
wxj committed
186
187
188
189
#   ${APP}
#   # numactl --cpunodebind=0 --membind=0 ${APP}
#   ;;
# [5])
wxj's avatar
wxj committed
190
#   export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
wxj's avatar
wxj committed
191
192
193
194
#   ${APP}
#   # numactl --cpunodebind=0 --membind=0 ${APP}
#   ;;
# [6])
wxj's avatar
wxj committed
195
#   export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
wxj's avatar
wxj committed
196
197
198
199
#   ${APP}
#   # numactl --cpunodebind=0 --membind=0 ${APP}
#   ;;
# [7])
wxj's avatar
wxj committed
200
#   export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
wxj's avatar
wxj committed
201
202
203
204
#   ${APP}
#   # numactl --cpunodebind=0 --membind=0 ${APP}
#   ;;
# esac