layers.py 18.9 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# Parts of the code here are adapted from PyTorch
# repo: https://github.com/pytorch/pytorch


import math

import torch
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn.parameter import Parameter

28
29
from .initialize import get_tensor_model_parallel_rank
from .initialize import get_tensor_model_parallel_world_size
30
from .initialize import get_tensor_model_parallel_group
31
32
33
34
from .mappings import copy_to_tensor_model_parallel_region
from .mappings import gather_from_tensor_model_parallel_region
from .mappings import reduce_from_tensor_model_parallel_region
from .mappings import scatter_to_tensor_model_parallel_region
35
36
37
38
from .random import get_cuda_rng_tracker
from .utils import divide
from .utils import split_tensor_along_last_dim
from .utils import VocabUtility
39
from megatron import get_args
40

mohammad's avatar
mohammad committed
41
42
43
44
45
46

_MODEL_PARALLEL_ATTRIBUTE_DEFAULTS = {'tensor_model_parallel': False,
                                      'partition_dim': -1,
                                      'partition_stride': 1}


mohammad's avatar
mohammad committed
47
48
49
50
51
52
def param_is_not_tensor_parallel_duplicate(param):
    return (hasattr(param, 'tensor_model_parallel') and
            param.tensor_model_parallel) or (
                get_tensor_model_parallel_rank() == 0)


mohammad's avatar
mohammad committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def set_tensor_model_parallel_attributes(tensor, is_parallel, dim, stride):
    # Make sure the attributes are not set.
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        assert not hasattr(tensor, attribute)
    # Set the attributes.
    setattr(tensor, 'tensor_model_parallel', is_parallel)
    setattr(tensor, 'partition_dim', dim)
    setattr(tensor, 'partition_stride', stride)


def set_defaults_if_not_set_tensor_model_parallel_attributes(tensor):
    def maybe_set(attribute, value):
        if not hasattr(tensor, attribute):
            setattr(tensor, attribute, value)
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        maybe_set(attribute, _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS[attribute])


def copy_tensor_model_parallel_attributes(destination_tensor, source_tensor):
    def maybe_copy(attribute):
        if hasattr(source_tensor, attribute):
            setattr(destination_tensor, attribute,
                    getattr(source_tensor, attribute))
    for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS:
        maybe_copy(attribute)


80
81
82
83
def _initialize_affine_weight_gpu(weight, init_method,
                                  partition_dim, stride=1):
    """Initialize affine weight for model parallel on GPU."""

mohammad's avatar
mohammad committed
84
85
86
87
88
    set_tensor_model_parallel_attributes(tensor=weight,
                                         is_parallel=True,
                                         dim=partition_dim,
                                         stride=stride)

89
90
91
92
93
94
95
96
    with get_cuda_rng_tracker().fork():
        init_method(weight)


def _initialize_affine_weight_cpu(weight, output_size, input_size,
                                  per_partition_size, partition_dim,
                                  init_method, stride=1,
                                  return_master_weight=False):
97
98
99
100
    """Initialize affine weight for model parallel.

    Build the master weight on all processes and scatter
    the relevant chunk."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
101

mohammad's avatar
mohammad committed
102
103
104
105
    set_tensor_model_parallel_attributes(tensor=weight,
                                         is_parallel=True,
                                         dim=partition_dim,
                                         stride=stride)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
106

107
108
    # Initialize master weight
    master_weight = torch.empty(output_size, input_size,
109
                                dtype=torch.float,
110
111
                                requires_grad=False)
    init_method(master_weight)
112
113
    args = get_args()
    master_weight = master_weight.to(dtype=args.params_dtype)
114
115
116
117
118

    # Split and copy
    per_partition_per_stride_size = divide(per_partition_size, stride)
    weight_list = torch.split(master_weight, per_partition_per_stride_size,
                              dim=partition_dim)
Jared Casper's avatar
Jared Casper committed
119
    rank = get_tensor_model_parallel_rank()
120
    world_size = get_tensor_model_parallel_world_size()
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    my_weight_list = weight_list[rank::world_size]

    with torch.no_grad():
        torch.cat(my_weight_list, dim=partition_dim, out=weight)
    if return_master_weight:
        return master_weight
    return None


class VocabParallelEmbedding(torch.nn.Module):
    """Embedding parallelized in the vocabulary dimension.

    This is mainly adapted from torch.nn.Embedding and all the default
    values are kept.
    Arguments:
        num_embeddings: vocabulary size.
        embedding_dim: size of hidden state.
        init_method: method to initialize weights.
    """
Neel Kant's avatar
Neel Kant committed
140

141
142
143
144
145
146
147
148
149
150
151
152
153
    def __init__(self, num_embeddings, embedding_dim,
                 init_method=init.xavier_normal_):
        super(VocabParallelEmbedding, self).__init__()
        # Keep the input dimensions.
        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        # Set the detauls for compatibility.
        self.padding_idx = None
        self.max_norm = None
        self.norm_type = 2.
        self.scale_grad_by_freq = False
        self.sparse = False
        self._weight = None
154
        self.tensor_model_parallel_size = get_tensor_model_parallel_world_size()
155
156
157
        # Divide the weight matrix along the vocaburaly dimension.
        self.vocab_start_index, self.vocab_end_index = \
            VocabUtility.vocab_range_from_global_vocab_size(
158
159
                self.num_embeddings, get_tensor_model_parallel_rank(),
                self.tensor_model_parallel_size)
160
        self.num_embeddings_per_partition = self.vocab_end_index - \
Neel Kant's avatar
Neel Kant committed
161
            self.vocab_start_index
162

163
164
        # Allocate weights and initialize.
        args = get_args()
165
        if args.use_cpu_initialization:
166
167
168
169
170
171
172
173
174
175
176
177
            self.weight = Parameter(torch.empty(
                self.num_embeddings_per_partition, self.embedding_dim,
                dtype=args.params_dtype))
            _initialize_affine_weight_cpu(
                self.weight, self.num_embeddings, self.embedding_dim,
                self.num_embeddings_per_partition, 0, init_method)
        else:
            self.weight = Parameter(torch.empty(
                self.num_embeddings_per_partition, self.embedding_dim,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            _initialize_affine_weight_gpu(self.weight, init_method,
                                          partition_dim=0, stride=1)
178
179

    def forward(self, input_):
180
        if self.tensor_model_parallel_size > 1:
181
182
183
184
185
186
187
188
189
            # Build the mask.
            input_mask = (input_ < self.vocab_start_index) | \
                         (input_ >= self.vocab_end_index)
            # Mask the input.
            masked_input = input_.clone() - self.vocab_start_index
            masked_input[input_mask] = 0
        else:
            masked_input = input_
            # Get the embeddings.
190
191
192
193
194
        output_parallel = F.embedding(masked_input, self.weight,
                                      self.padding_idx, self.max_norm,
                                      self.norm_type, self.scale_grad_by_freq,
                                      self.sparse)
        # Mask the output embedding.
195
        if self.tensor_model_parallel_size > 1:
196
            output_parallel[input_mask, :] = 0.0
197
        # Reduce across all the model parallel GPUs.
198
        output = reduce_from_tensor_model_parallel_region(output_parallel)
199
200
201
        return output


Sangkug Lym's avatar
Sangkug Lym committed
202
class LinearWithGradAccumulationAndAsyncAllreduce(torch.autograd.Function):
203
    """
Sangkug Lym's avatar
Sangkug Lym committed
204
205
    Linear layer execution with asynchronous all-reduce and gradient accumulation
    fusion in backprop.
206
207
    """
    @staticmethod
Sangkug Lym's avatar
Sangkug Lym committed
208
209
    def forward(ctx, input, weight, bias, gradient_accumulation_fusion,
                async_grad_allreduce):
210
        ctx.save_for_backward(input, weight)
slym's avatar
slym committed
211
        ctx.use_bias = bias is not None
Sangkug Lym's avatar
Sangkug Lym committed
212
213
        ctx.gradient_accumulation_fusion = gradient_accumulation_fusion
        ctx.async_grad_allreduce = async_grad_allreduce
214
        output = torch.matmul(input, weight.t())
slym's avatar
slym committed
215
        if bias is not None:
216
217
218
219
220
            output = output + bias
        return output

    @staticmethod
    def backward(ctx, grad_output):
Sangkug Lym's avatar
Sangkug Lym committed
221
        import fused_dense_cuda
222
223
224
        input, weight = ctx.saved_tensors
        use_bias = ctx.use_bias
        grad_input = grad_output.matmul(weight)
Sangkug Lym's avatar
Sangkug Lym committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

        # Convert the tensor shapes to 2D for execution compatibility
        grad_output = grad_output.view(grad_output.shape[0] * grad_output.shape[1],
                                       grad_output.shape[2])
        input = input.view(input.shape[0] * input.shape[1], input.shape[2])

        if ctx.async_grad_allreduce:
            # Asynchronous all-reduce
            handle = torch.distributed.all_reduce(
                    grad_input, group=get_tensor_model_parallel_group(), async_op=True)
            # Delay the start of weight gradient computation shortly (3us) to have
            # all-reduce scheduled first and have GPU resources allocated
            _ = torch.empty(1, device=grad_output.device) + 1
        if ctx.gradient_accumulation_fusion:
            fused_dense_cuda.wgrad_gemm_accum_fp32(input, grad_output, weight.main_grad)
            grad_weight = None
        else:
            grad_weight = grad_output.t().matmul(input)
243
        grad_bias = grad_output.sum(dim=0) if use_bias else None
Sangkug Lym's avatar
Sangkug Lym committed
244
245
246
        if ctx.async_grad_allreduce:
            handle.wait()
        return grad_input, grad_weight, grad_bias, None, None
247
248


249
250
251
252
253
254
255
256
257
258
class ColumnParallelLinear(torch.nn.Module):
    """Linear layer with column parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its second dimension as A = [A_1, ..., A_p].

    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias
Sangkug Lym's avatar
Sangkug Lym committed
259
        gather_output: If true, call all-gather on output and make Y available
260
261
262
263
264
265
266
267
                       to all GPUs, otherwise, every GPU will have its output
                       which is Y_i = XA_i
        init_method: method to initialize weights. Note that bias is always set
                     to zero.
        stride: For the strided linear layers.
        keep_master_weight_for_test: This was added for testing and should be
                                     set to False. It returns the master weights
                                     used for initialization.
268
269
270
        skip_bias_add: This was added to enable performance optimations where bias
                       can be fused with other elementwise operations. we skip 
                       adding bias but instead return it.
271
    """
Neel Kant's avatar
Neel Kant committed
272

273
274
    def __init__(self, input_size, output_size, bias=True, gather_output=True,
                 init_method=init.xavier_normal_, stride=1,
275
276
                 keep_master_weight_for_test=False,
                 skip_bias_add=False):
277
278
279
280
281
282
283
        super(ColumnParallelLinear, self).__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.gather_output = gather_output
        # Divide the weight matrix along the last dimension.
284
        world_size = get_tensor_model_parallel_world_size()
285
        self.output_size_per_partition = divide(output_size, world_size)
286
        self.skip_bias_add = skip_bias_add
287
288
289
290

        # Parameters.
        # Note: torch.nn.functional.linear performs XA^T + b and as a result
        # we allocate the transpose.
291
292
        # Initialize weight.
        args = get_args()
293
        if args.use_cpu_initialization:
294
295
296
297
298
299
300
301
302
303
304
305
306
            self.weight = Parameter(torch.empty(self.output_size_per_partition,
                                                self.input_size,
                                                dtype=args.params_dtype))
            self.master_weight = _initialize_affine_weight_cpu(
                self.weight, self.output_size, self.input_size,
                self.output_size_per_partition, 0, init_method,
                stride=stride, return_master_weight=keep_master_weight_for_test)
        else:
            self.weight = Parameter(torch.empty(
                self.output_size_per_partition, self.input_size,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            _initialize_affine_weight_gpu(self.weight, init_method,
                                          partition_dim=0, stride=stride)
hwijeen's avatar
hwijeen committed
307

308
        if bias:
309
            if args.use_cpu_initialization:
310
311
312
313
314
315
316
                self.bias = Parameter(torch.empty(
                    self.output_size_per_partition, dtype=args.params_dtype))
            else:
                self.bias = Parameter(torch.empty(
                    self.output_size_per_partition,
                    device=torch.cuda.current_device(),
                    dtype=args.params_dtype))
317
            set_tensor_model_parallel_attributes(self.bias, True, 0, stride)
318
319
320
321
322
            # Always initialize bias to zero.
            with torch.no_grad():
                self.bias.zero_()
        else:
            self.register_parameter('bias', None)
slym's avatar
slym committed
323
        self.async_tensor_model_parallel_allreduce = (
Sangkug Lym's avatar
Sangkug Lym committed
324
                args.async_tensor_model_parallel_allreduce and
slym's avatar
slym committed
325
                world_size > 1)
Sangkug Lym's avatar
Sangkug Lym committed
326
        self.gradient_accumulation_fusion = args.gradient_accumulation_fusion
327

328
329

    def forward(self, input_):
330
        bias = self.bias if not self.skip_bias_add else None
331

slym's avatar
slym committed
332
        if self.async_tensor_model_parallel_allreduce:
Sangkug Lym's avatar
Sangkug Lym committed
333
            input_parallel = input_
334
335
336
        else:
            # Set up backprop all-reduce.
            input_parallel = copy_to_tensor_model_parallel_region(input_)
Sangkug Lym's avatar
Sangkug Lym committed
337
338
339
340
        # Matrix multiply.
        output_parallel = LinearWithGradAccumulationAndAsyncAllreduce.apply(
            input_parallel, self.weight, bias, self.gradient_accumulation_fusion,
            self.async_tensor_model_parallel_allreduce)
341
342
        if self.gather_output:
            # All-gather across the partitions.
343
            output = gather_from_tensor_model_parallel_region(output_parallel)
344
        else:
hwijeen's avatar
hwijeen committed
345
            output = output_parallel
346
347
        output_bias = self.bias if self.skip_bias_add else None
        return output, output_bias
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374


class RowParallelLinear(torch.nn.Module):
    """Linear layer with row parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its first dimension and X along its second dimension as:
               -   -
              | A_1 |
              | .   |
          A = | .   |        X = [X_1, ..., X_p]
              | .   |
              | A_p |
               -   -
    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias. Note that bias is not parallelized.
        input_is_parallel: If true, we assume that the input is already
                           split across the GPUs and we do not split
                           again.
        init_method: method to initialize weights. Note that bias is always set
                     to zero.
        stride: For the strided linear layers.
        keep_master_weight_for_test: This was added for testing and should be
                                     set to False. It returns the master weights
                                     used for initialization.
hwijeen's avatar
hwijeen committed
375
376
        skip_bias_add: This was added to enable performance optimization where bias
                       can be fused with other elementwise operations. We skip
377
                       adding bias but instead return it.
378
    """
Neel Kant's avatar
Neel Kant committed
379

380
381
382
    def __init__(self, input_size, output_size, bias=True,
                 input_is_parallel=False,
                 init_method=init.xavier_normal_, stride=1,
383
384
                 keep_master_weight_for_test=False,
                 skip_bias_add=False):
385
386
387
388
389
390
391
        super(RowParallelLinear, self).__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.input_is_parallel = input_is_parallel
        # Divide the weight matrix along the last dimension.
392
        world_size = get_tensor_model_parallel_world_size()
393
        self.input_size_per_partition = divide(input_size, world_size)
394
        self.skip_bias_add = skip_bias_add
395
396
397
398

        # Parameters.
        # Note: torch.nn.functional.linear performs XA^T + b and as a result
        # we allocate the transpose.
399
400
        # Initialize weight.
        args = get_args()
401
        if args.use_cpu_initialization:
402
403
404
405
406
407
408
409
410
411
412
413
414
            self.weight = Parameter(torch.empty(self.output_size,
                                                self.input_size_per_partition,
                                                dtype=args.params_dtype))
            self.master_weight = _initialize_affine_weight_cpu(
                self.weight, self.output_size, self.input_size,
                self.input_size_per_partition, 1, init_method,
                stride=stride, return_master_weight=keep_master_weight_for_test)
        else:
            self.weight = Parameter(torch.empty(
                self.output_size, self.input_size_per_partition,
                device=torch.cuda.current_device(), dtype=args.params_dtype))
            _initialize_affine_weight_gpu(self.weight, init_method,
                                          partition_dim=1, stride=stride)
415
        if bias:
416
            if args.use_cpu_initialization:
417
418
419
420
421
422
                self.bias = Parameter(torch.empty(self.output_size,
                                                  dtype=args.params_dtype))
            else:
                self.bias = Parameter(torch.empty(
                    self.output_size, device=torch.cuda.current_device(),
                    dtype=args.params_dtype))
423
424
425
426
427
            # Always initialize bias to zero.
            with torch.no_grad():
                self.bias.zero_()
        else:
            self.register_parameter('bias', None)
Sangkug Lym's avatar
Sangkug Lym committed
428
        self.gradient_accumulation_fusion = args.gradient_accumulation_fusion
429

430
431
432
433
434
435

    def forward(self, input_):
        # Set up backprop all-reduce.
        if self.input_is_parallel:
            input_parallel = input_
        else:
436
            input_parallel = scatter_to_tensor_model_parallel_region(input_)
437
        # Matrix multiply.
Sangkug Lym's avatar
Sangkug Lym committed
438
439
440
        output_parallel = LinearWithGradAccumulationAndAsyncAllreduce.apply(
            input_parallel, self.weight, None,
            self.gradient_accumulation_fusion, None)
441
        # All-reduce across all the partitions.
442
        output_ = reduce_from_tensor_model_parallel_region(output_parallel)
443
444
445
        if not self.skip_bias_add:
            output = output_ + self.bias if self.bias is not None else output_
            output_bias = None
446
447
        else:
            output = output_
448
449
450
            output_bias = self.bias
        return output, output_bias