"vscode:/vscode.git/clone" did not exist on "bf72b80122fd888bf619d17b96fa3e323ab809fc"
tokenizer.py 4.74 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

Mohammad's avatar
Mohammad committed
16
"""Megatron tokenizers."""
17
18
19
20
21

from abc import ABC
from abc import abstractmethod

from .bert_tokenization import FullTokenizer as FullBertTokenizer
Mohammad's avatar
Mohammad committed
22
from .gpt2_tokenization import GPT2Tokenizer
23
24


Mohammad's avatar
Mohammad committed
25
def build_tokenizer(args):
Mohammad's avatar
Mohammad committed
26
27
    """Initialize tokenizer."""
    if args.rank == 0:
Mohammad's avatar
Mohammad committed
28
        print('> building {} tokenizer ...'.format(args.tokenizer_type),
Mohammad's avatar
Mohammad committed
29
              flush=True)
30
31

    # Select and instantiate the tokenizer.
Mohammad's avatar
Mohammad committed
32
    assert args.vocab_file is not None
Mohammad's avatar
Mohammad committed
33
34
35
    if args.tokenizer_type == 'BertWordPieceLowerCase':
        tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file,
                                                    lower_case=True)
Mohammad's avatar
Mohammad committed
36
37
38
    elif args.tokenizer_type == 'GPT2BPETokenizer':
        assert args.merge_file is not None
        tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file)
39
40
    else:
        raise NotImplementedError('{} tokenizer is not '
Mohammad's avatar
Mohammad committed
41
                                  'implemented.'.format(args.tokenizer_type))
42
43

    # Add vocab size.
Mohammad's avatar
Mohammad committed
44
45
    args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size,
                                                      args)
Mohammad's avatar
Mohammad committed
46
47
48
49

    return tokenizer


Mohammad's avatar
Mohammad committed
50
def _vocab_size_with_padding(orig_vocab_size, args):
Mohammad's avatar
Mohammad committed
51
52
53
54
55
56
57
58
59
60
61
62
63
    """Pad vocab size so it is divisible by model parallel size and
    still having GPU friendly size."""

    after = orig_vocab_size
    multiple = args.make_vocab_size_divisible_by * \
               args.model_parallel_size
    while (after % multiple) != 0:
        after += 1
    if args.rank == 0:
        print(' > padded vocab (size: {}) with {} dummy tokens '
              '(new size: {})'.format(
                  orig_vocab_size, after - orig_vocab_size, after), flush=True)
    return after
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135


class AbstractTokenizer(ABC):
    """Abstract class for tokenizer."""

    def __init__(self, name):
        self.name = name
        super().__init__()

    @property
    @abstractmethod
    def vocab_size(self):
        pass

    @abstractmethod
    def tokenize(self, text):
        pass

    @property
    def cls(self):
        raise NotImplementedError('CLS is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def sep(self):
        raise NotImplementedError('SEP is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def pad(self):
        raise NotImplementedError('PAD is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def eod(self):
        raise NotImplementedError('EOD is not provided for {} '
                                  'tokenizer'.format(self.name))


class _BertWordPieceTokenizer(AbstractTokenizer):
    """Original BERT wordpiece tokenizer."""

    def __init__(self, vocab_file, lower_case=True):
        if lower_case:
            name = 'BERT Lower Case'
        else:
            name = 'BERT Upper Case'
        super().__init__(name)
        self.tokenizer = FullBertTokenizer(vocab_file, do_lower_case=lower_case)
        self.cls_id = self.tokenizer.vocab['[CLS]']
        self.sep_id = self.tokenizer.vocab['[SEP]']
        self.pad_id = self.tokenizer.vocab['[PAD]']

    @property
    def vocab_size(self):
        return self.tokenizer.vocab_size()

    def tokenize(self, text):
        text_tokens = self.tokenizer.tokenize(text)
        return self.tokenizer.convert_tokens_to_ids(text_tokens)

    @property
    def cls(self):
        return self.cls_id

    @property
    def sep(self):
        return self.sep_id

    @property
    def pad(self):
        return self.pad_id
Mohammad's avatar
Mohammad committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158


class _GPT2BPETokenizer(AbstractTokenizer):
    """Original GPT2 BPE tokenizer."""

    def __init__(self, vocab_file, merge_file):
        name = 'GPT2 BPE'
        super().__init__(name)

        self.tokenizer = GPT2Tokenizer(vocab_file, merge_file, errors='replace',
                                       special_tokens=[], max_len=None)
        self.eod_id = self.tokenizer.encoder['<|endoftext|>']

    @property
    def vocab_size(self):
        return len(self.tokenizer.encoder)

    def tokenize(self, text):
        return self.tokenizer.encode(text)

    @property
    def eod(self):
        return self.eod_id