data.py 8.28 KB
Newer Older
zihanl's avatar
zihanl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

"""Build Dataset for Controllable Coversational Model"""

import os
import torch
import numpy as np

from megatron import get_tokenizer
from megatron import print_rank_0


def read_data_for_finetuning(tokenizer, data_path, module):
    """
    Data Format: topic \t dialog context \t knowledge \t response.
    """
    
    data_list = []
    with open(data_path, "r") as f:
        for i, line in enumerate(f):
            line = line.rstrip()
            splits = line.split("\t")
            assert len(splits) == 4

            topic = splits[0].split(" [CTRL] ")[0]
            dialog_context = splits[1]
            knowledge = splits[2]
            response = splits[3]

            turns = dialog_context.split(" [SEP] ")
            turns = turns[-3:]

            if module == "response":
                # input_ids
                input_ids = tokenizer.tokenize("( " + topic + " )")
                if knowledge != "no_passages_used":
                    input_ids.extend(tokenizer.tokenize("( " + knowledge + " )")[:256])
                
                for turn in turns:
                    turn = "<< " + turn + " >>"
                    input_ids.extend(tokenizer.tokenize(turn))
                input_ids.extend(tokenizer.tokenize(":"))

                # output_ids
                output_ids = tokenizer.tokenize(response)

                data_list.append({"input_ids": input_ids, "output_ids": output_ids})
                
            elif module == "knowledge":
                # skip example without knowledge sentences
                if knowledge == "no_passages_used":
                    continue

                input_ids = []
                input_ids.extend(tokenizer.tokenize("( " + topic + " )"))
                
                for turn in turns:
                    turn = "<< " + turn + " >>"
                    input_ids.extend(tokenizer.tokenize(turn))
                input_ids.extend(tokenizer.tokenize(":"))

                output_ids = tokenizer.tokenize(knowledge)

                data_list.append({"input_ids": input_ids, "output_ids": output_ids})

            else:
                raise ValueError("Please input a correct module name! " \
                                 "(either dialog or cnotrol))")
    
    return data_list


def read_data_for_prompting(tokenizer, test_data_path, prompt_file, 
                            module, num_prompt_examples, dynamic_prompt):
    
    # get prompts
    if dynamic_prompt:
        import json
        prompt_examples_dict = {}
        with open(prompt_file, "r") as f:
            for i, line in enumerate(f):
                line = line.strip()
                line_dict = json.loads(line)
                key = list(line_dict.keys())[0]
                
                if key not in prompt_examples_dict:
                    prompt_examples = line_dict[key]
                    prompt_examples = prompt_examples[:num_prompt_examples]
                    prompt = ""
                    for instance in prompt_examples:
                        instance = instance.strip()
                        prompt += instance + " \n"

                    prompt_examples_dict[topic] = prompt

    else:
        with open(prompt_file, "r") as f:
            prompt_examples = f.readlines()
    
            prompt_examples = prompt_examples[:num_prompt_examples]
            prompt = ""
            for instance in prompt_examples:
                instance = instance.strip()
                prompt += instance + " \n"

    data_list = []
    with open(test_data_path, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            splits = line.split("\t")

            topic = splits[0].split(" [CTRL] ")[0]
            turns = splits[1].split(" [SEP] ")[-3:]
            last_turn = turns[-1]
            ctrl_sent = splits[2]
            response = splits[3]

            if dynamic_prompt:
                prompt = prompt_examples_dict[topic]

            if module == "response":
                # input seq
                input_seq = prompt

                input_seq += "Topic: " + topic + ". "
                input_seq += "User says: " + last_turn + " "
                input_seq += "We know that: " + ctrl_sent + " "
                input_seq += "System replies:"

                # output seq
                output_seq = response

                input_ids = tokenizer.tokenize(input_seq)
                output_ids = tokenizer.tokenize(output_seq)
                data_list.append({"input_ids": input_ids, "output_ids": output_ids})

            elif module == "knowledge":
                # input seq
                input_seq = prompt
                input_seq += "( " + last_turn + " ) " + topic + " =>"

                # output seq
                output_seq = ctrl_sent

                input_ids = tokenizer.tokenize(input_seq)
                output_ids = tokenizer.tokenize(output_seq)
                data_list.append({"input_ids": input_ids, "output_ids": output_ids})

            else:
                raise ValueError("Please input a correct module name! " \
                                 "(either dialog or cnotrol))")

    return data_list


def data_shuffle(data, seed):
    # set random seed to make the shuffling reproducible
    np.random.seed(seed)
    np.random.shuffle(data)
    return data


class KnwlDialoDataset(torch.utils.data.Dataset):

    def __init__(self, data, max_seq_len, pad_id, eod_id):
        # need to deal with padding, label masking
        self.data = data
        self.max_seq_len = max_seq_len
        self.pad_id = pad_id
        self.eod_id = eod_id

    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        data_dict = self.data[idx]
        input_ids, output_ids = data_dict["input_ids"], data_dict["output_ids"]
        
        text = input_ids + output_ids + [self.eod_id]
        loss_mask = [0]*(len(input_ids)-1) + [1]*(len(output_ids)+1)

        text_len = len(text)
        if text_len > self.max_seq_len+1:
            text = text[:self.max_seq_len+1]
            loss_mask = loss_mask[:self.max_seq_len]
        else:
            text += [self.pad_id] * (self.max_seq_len+1 - text_len)
            loss_mask += [0] * (self.max_seq_len+1 - text_len)

        return {"text": np.array(text, dtype=np.int64), \
                "loss_mask": np.array(loss_mask, dtype=np.int64)}


def build_train_valid_datasets(train_data_path, valid_data_path, module,
                               max_seq_len, seed):
    """Build train, valid, and test datasets."""

    tokenizer = get_tokenizer()
    train_data_list = read_data_for_finetuning(tokenizer, train_data_path, module)
    valid_data_list = read_data_for_finetuning(tokenizer, valid_data_path, module)

    # shuffle the training data
    train_data_list = data_shuffle(train_data_list, seed)

    # build train, valid datasets
    train_dataset = KnwlDialoDataset(train_data_list, 
                                     max_seq_len, 
                                     pad_id=tokenizer.pad_id, 
                                     eod_id=tokenizer.eod_id)

    valid_dataset = KnwlDialoDataset(valid_data_list, 
                                     max_seq_len, 
                                     pad_id=tokenizer.pad_id, 
                                     eod_id=tokenizer.eod_id)

    return train_dataset, valid_dataset


def build_test_dataset(test_data_path, module, max_seq_len):
    tokenizer = get_tokenizer()

    test_data_list = read_data_for_finetuning(tokenizer, test_data_path, module)

    test_dataset = KnwlDialoDataset(test_data_list, 
                                    max_seq_len, 
                                    pad_id=tokenizer.pad_id, 
                                    eod_id=tokenizer.eod_id)

    return test_dataset


def build_test_dataset_for_prompting(test_data_path, prompt_file, module, max_seq_len, 
                                     num_prompt_examples, dynamic_prompt):
    tokenizer = get_tokenizer()

    test_data_list = read_data_for_prompting(tokenizer, test_data_path, prompt_file, module, \
                                             num_prompt_examples, dynamic_prompt)

    test_dataset = KnwlDialoDataset(test_data_list,
                                    max_seq_len,
                                    pad_id=tokenizer.pad_id, 
                                    eod_id=tokenizer.eod_id)

    return test_dataset