data.py 6.86 KB
Newer Older
zihanl's avatar
zihanl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

"""Build Dataset for Controllable Coversational Model"""

import os
import torch
import numpy as np

from megatron import get_tokenizer
from megatron import print_rank_0

def read_data(tokenizer, data_path, train_module):
    """read and tokenize dialog data"""

    data_list = []
    with open(data_path, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            splits = line.split("\t")
            length_split = len(splits)
            assert length_split == 2 or length_split == 3 or length_split == 4

            if train_module == "dialog":
                # if length_split == 2:
                #     continue

                dialog_context = splits[0]
                if length_split > 2:
                    ctrl_sent = splits[-2]
                response = splits[-1]
                # only take the last three turns in the dialog context
                turns = dialog_context.split(" [SEP] ")
                turns = turns[-3:]

                # input_ids
                for idx, turn in enumerate(turns):
                    if not (turn.endswith("?") or turn.endswith(".") or turn.endswith("!")):
                        turn = turn + " ."
                    if idx == 0:
                        input_ids = tokenizer.tokenize(turn)
                    else:
                        # input_ids.extend([tokenizer.sep_id] + tokenizer.tokenize(turn))
                        input_ids.extend(tokenizer.tokenize(turn))
                
                if length_split > 2:
                    # when there is control sentence, add it into the input_ids
                    # input_ids.extend([tokenizer.ctrl_id] + tokenizer.tokenize(ctrl_sent))
                    input_ids.extend(tokenizer.tokenize("( " + ctrl_sent + " ) ."))

                # output_ids
                output_ids = tokenizer.tokenize(response)

                data_list.append({"input_ids": input_ids, "output_ids": output_ids})

            elif train_module == "control":
                if length_split == 2:
                    continue
                dialog_context = splits[0]
                ctrl_sent = splits[-2]
                ctrl_code = splits[1] if length_split == 4 else None

                turns = dialog_context.split(" [SEP] ")
                # last_turn = turns[-1]

                # turns = turns[-3:]
                # for idx, turn in enumerate(turns):
                #     if idx == 0:
                #         input_ids = tokenizer.tokenize(turn)
                #     else:
                #         # input_ids.extend([tokenizer.sep_id] + tokenizer.tokenize(turn))
                #         input_ids.extend(tokenizer.tokenize(turn))

                # # input_ids
                # if ctrl_code:
                #     ctrl_code_list = ctrl_code.split(" [CTRL] ")
                #     for code in ctrl_code_list:
                #         # input_ids.extend([tokenizer.ctrl_id] + tokenizer.tokenize(code))
                #         input_ids.extend(tokenizer.tokenize(code + " ."))

                # put control code at the begginning
                input_ids = []
                if ctrl_code:
                    ctrl_code_list = ctrl_code.split(" [CTRL] ")
                    for code in ctrl_code_list:
                        input_ids.extend(tokenizer.tokenize("( " + code + " )"))
                
                turns = turns[-3:]
                for turn in turns:
                    if not (turn.endswith("?") or turn.endswith(".") or turn.endswith("!")):
                        turn = turn + " ."
                    input_ids.extend(tokenizer.tokenize(turn))

                # output_ids
                outputs = ctrl_sent
                output_ids = tokenizer.tokenize(outputs)

                data_list.append({"input_ids": input_ids, "output_ids": output_ids})

            else:
                raise ValueError("Please input a correct train-module name! (either dialog or cnotrol))")
                
    return data_list


def data_shuffle(data, seed):
    # set random seed to make the shuffling reproducible
    np.random.seed(seed)
    np.random.shuffle(data)
    return data


class ControlDialogDataset(torch.utils.data.Dataset):

    def __init__(self, data, max_seq_len, sep_id, pad_id, eod_id):
        # need to deal with padding, label masking
        self.data = data
        self.max_seq_len = max_seq_len
        self.sep_id = sep_id
        self.pad_id = pad_id
        self.eod_id = eod_id

    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        data_dict = self.data[idx]
        input_ids, output_ids = data_dict["input_ids"], data_dict["output_ids"]
        
        assert len(input_ids) < self.max_seq_len, "Set a larger max-seq-len!"

        # length_of_loss_mask == length_of_text - 1
        # text = input_ids + [self.sep_id] + output_ids + [self.eod_id]
        text = input_ids + output_ids + [self.eod_id]
        loss_mask = [0]*(len(input_ids)-1) + [1]*(len(output_ids)+1)

        text_len = len(text)
        if text_len > self.max_seq_len+1:
            text = text[:self.max_seq_len+1]
            loss_mask = loss_mask[:self.max_seq_len]
        else:
            text += [self.pad_id] * (self.max_seq_len+1 - text_len)
            loss_mask += [0] * (self.max_seq_len+1 - text_len)

        return {"text": np.array(text, dtype=np.int64), "loss_mask": np.array(loss_mask, dtype=np.int64)}


def build_train_valid_test_datasets(data_folder, dataset_name, train_module, max_seq_len, seed):
    """Build train, valid, and test datasets."""

    dataname_dict = {"wizard_of_wikipedia": {"train": "train_entity_based_control.txt", "valid": "valid_random_split_entity_based_control.txt", "test": "test_random_split_entity_based_control.txt"}}
    
    train_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["train"])
    valid_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["valid"])
    test_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["test"])

    tokenizer = get_tokenizer()
    train_data_list = read_data(tokenizer, train_data_path, train_module)
    valid_data_list = read_data(tokenizer, valid_data_path, train_module)
    test_data_list = read_data(tokenizer, test_data_path, train_module)

    # shuffle the training data
    train_data_list = data_shuffle(train_data_list, seed)

    # build train, valid, and test datasets
    train_dataset = ControlDialogDataset(train_data_list, max_seq_len, sep_id=tokenizer.sep_id, pad_id=tokenizer.pad_id, eod_id=tokenizer.eod_id)
    valid_dataset = ControlDialogDataset(valid_data_list, max_seq_len, sep_id=tokenizer.sep_id, pad_id=tokenizer.pad_id, eod_id=tokenizer.eod_id)
    test_dataset = ControlDialogDataset(test_data_list, max_seq_len, sep_id=tokenizer.sep_id, pad_id=tokenizer.pad_id, eod_id=tokenizer.eod_id)

    return train_dataset, valid_dataset, test_dataset