tokenizer.py 9.75 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Mohammad's avatar
Mohammad committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

Mohammad's avatar
Mohammad committed
16
"""Megatron tokenizers."""
17
18
19
20
21

from abc import ABC
from abc import abstractmethod

from .bert_tokenization import FullTokenizer as FullBertTokenizer
Mohammad's avatar
Mohammad committed
22
from .gpt2_tokenization import GPT2Tokenizer
23
24


Mohammad's avatar
Mohammad committed
25
def build_tokenizer(args):
Mohammad's avatar
Mohammad committed
26
27
    """Initialize tokenizer."""
    if args.rank == 0:
Mohammad's avatar
Mohammad committed
28
        print('> building {} tokenizer ...'.format(args.tokenizer_type),
Mohammad's avatar
Mohammad committed
29
              flush=True)
30
31

    # Select and instantiate the tokenizer.
Mohammad's avatar
Mohammad committed
32
    assert args.vocab_file is not None
Mohammad's avatar
Mohammad committed
33
34
    if args.tokenizer_type == 'BertWordPieceLowerCase':
        tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file,
35
36
                                            lower_case=True,
                                            vocab_extra_ids=args.vocab_extra_ids)
Raul Puri's avatar
Raul Puri committed
37
38
    elif args.tokenizer_type == 'BertWordPieceCase':
        tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file,
39
40
                                            lower_case=False,
                                            vocab_extra_ids=args.vocab_extra_ids)
Mohammad's avatar
Mohammad committed
41
42
    elif args.tokenizer_type == 'GPT2BPETokenizer':
        assert args.merge_file is not None
43
        tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file, special_tokens=args.spec_toks)
zihanl's avatar
zihanl committed
44
        # tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file)
45
46
    else:
        raise NotImplementedError('{} tokenizer is not '
Mohammad's avatar
Mohammad committed
47
                                  'implemented.'.format(args.tokenizer_type))
48
49

    # Add vocab size.
Mohammad's avatar
Mohammad committed
50
51
    args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size,
                                                      args)
Mohammad's avatar
Mohammad committed
52
53
54
55

    return tokenizer


Mohammad's avatar
Mohammad committed
56
def _vocab_size_with_padding(orig_vocab_size, args):
Mohammad's avatar
Mohammad committed
57
58
59
60
61
    """Pad vocab size so it is divisible by model parallel size and
    still having GPU friendly size."""

    after = orig_vocab_size
    multiple = args.make_vocab_size_divisible_by * \
62
        args.tensor_model_parallel_size
Mohammad's avatar
Mohammad committed
63
64
65
66
67
68
69
    while (after % multiple) != 0:
        after += 1
    if args.rank == 0:
        print(' > padded vocab (size: {}) with {} dummy tokens '
              '(new size: {})'.format(
                  orig_vocab_size, after - orig_vocab_size, after), flush=True)
    return after
70
71
72
73
74
75
76
77
78
79
80
81
82
83


class AbstractTokenizer(ABC):
    """Abstract class for tokenizer."""

    def __init__(self, name):
        self.name = name
        super().__init__()

    @property
    @abstractmethod
    def vocab_size(self):
        pass

84
85
86
87
88
89
90
91
92
93
94
95
    @property
    @abstractmethod
    def vocab(self):
        """Dictionary from vocab text token to id token."""
        pass

    @property
    @abstractmethod
    def inv_vocab(self):
        """Dictionary from vocab id token to text token."""
        pass

96
97
98
99
    @abstractmethod
    def tokenize(self, text):
        pass

100
101
102
103
    def detokenize(self, token_ids):
        raise NotImplementedError('detokenizer is not implemented for {} '
                                  'tokenizer'.format(self.name))

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    @property
    def cls(self):
        raise NotImplementedError('CLS is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def sep(self):
        raise NotImplementedError('SEP is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def pad(self):
        raise NotImplementedError('PAD is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def eod(self):
        raise NotImplementedError('EOD is not provided for {} '
                                  'tokenizer'.format(self.name))

124
125
126
127
128
    @property
    def mask(self):
        raise NotImplementedError('MASK is not provided for {} '
                                  'tokenizer'.format(self.name))

129
130
131
132

class _BertWordPieceTokenizer(AbstractTokenizer):
    """Original BERT wordpiece tokenizer."""

133
    def __init__(self, vocab_file, lower_case=True, vocab_extra_ids=0):
134
135
136
137
138
139
140
141
142
        if lower_case:
            name = 'BERT Lower Case'
        else:
            name = 'BERT Upper Case'
        super().__init__(name)
        self.tokenizer = FullBertTokenizer(vocab_file, do_lower_case=lower_case)
        self.cls_id = self.tokenizer.vocab['[CLS]']
        self.sep_id = self.tokenizer.vocab['[SEP]']
        self.pad_id = self.tokenizer.vocab['[PAD]']
Neel Kant's avatar
Neel Kant committed
143
        self.mask_id = self.tokenizer.vocab['[MASK]']
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        self._additional_special_tokens = []

        # (dsachan) Add BOS and EOS tokens
        SPECIAL_TOKENS = {'eos_token': '[EOS]',
                          'bos_token': '[BOS]'}
        self._bos_token = '[BOS]'
        self.add_token(self._bos_token)
        self._bos_token_id = self.vocab.get(self._bos_token)

        self._eos_token = '[EOS]'
        self.add_token(self._eos_token)
        self._eos_token_id = self.vocab.get(self._eos_token)

        # (dsachan) Add additional special tokens
        # These can be used as sentinel tokens in T5 model inputs
        additional_special_tokens = []
        additional_special_tokens.extend(
            ["<extra_id_{}>".format(i) for i in range(vocab_extra_ids)])
        self.add_additional_special_tokens(additional_special_tokens)

    def add_token(self, token):
        if token not in self.vocab:
            self.inv_vocab[self.vocab_size] = token
            # self.vocab_size comes from len(vocab)
            # and it will increase as we add elements
            self.vocab[token] = self.vocab_size

    def add_additional_special_tokens(self, tokens_list):
        setattr(self, "additional_special_tokens", tokens_list)
        for value in tokens_list:
            self.add_token(value)
175
176
177
178
179

    @property
    def vocab_size(self):
        return self.tokenizer.vocab_size()

180
181
182
183
184
185
186
187
    @property
    def vocab(self):
        return self.tokenizer.vocab

    @property
    def inv_vocab(self):
        return self.tokenizer.inv_vocab

188
189
190
191
    def tokenize(self, text):
        text_tokens = self.tokenizer.tokenize(text)
        return self.tokenizer.convert_tokens_to_ids(text_tokens)

192
193
194
195
    def decode(self, ids):
        tokens = self.tokenizer.convert_ids_to_tokens(ids)
        return self.tokenizer.convert_tokens_to_string(tokens)

196
197
198
199
    def decode_token_ids(self, token_ids):
        tokens = self.tokenizer.convert_ids_to_tokens(token_ids)
        exclude_list = ['[PAD]', '[CLS]']
        non_pads = [t for t in tokens if t not in exclude_list]
200
201
202
203
204
205
206
207
208

        result = ""
        for s in non_pads:
            if s.startswith("##"):
                result += s[2:]
            else:
                result += " " + s

        return result
209

210
211
212
213
214
215
216
217
218
219
220
    @property
    def cls(self):
        return self.cls_id

    @property
    def sep(self):
        return self.sep_id

    @property
    def pad(self):
        return self.pad_id
Mohammad's avatar
Mohammad committed
221

222
223
224
    @property
    def mask(self):
        return self.mask_id
Mohammad's avatar
Mohammad committed
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    @property
    def bos_token(self):
        """ Beginning of sentence token id """
        return self._bos_token

    @property
    def eos_token(self):
        """ End of sentence token id """
        return self._eos_token

    @property
    def additional_special_tokens(self):
        """ All the additional special tokens you may want to use (list of strings)."""
        return self._additional_special_tokens

    @property
    def bos_token_id(self):
        """ Id of the beginning of sentence token in the vocabulary."""
        return self._bos_token_id

    @property
    def eos_token_id(self):
        """ Id of the end of sentence token in the vocabulary."""
        return self._eos_token_id

    @property
    def additional_special_tokens_ids(self):
        """ Ids of all the additional special tokens in the vocabulary (list of integers)."""
        return [self.vocab.get(token) for token in self._additional_special_tokens]

    @additional_special_tokens.setter
    def additional_special_tokens(self, value):
        self._additional_special_tokens = value

Neel Kant's avatar
Neel Kant committed
260

Mohammad's avatar
Mohammad committed
261
262
263
class _GPT2BPETokenizer(AbstractTokenizer):
    """Original GPT2 BPE tokenizer."""

264
    def __init__(self, vocab_file, merge_file, special_tokens=None):
Mohammad's avatar
Mohammad committed
265
266
267
        name = 'GPT2 BPE'
        super().__init__(name)

268
269
270
271
272
        if special_tokens is not None:
            # for controllable dialog, special_tokens: "[SEP],[CTRL],[PAD]"
            special_tokens = special_tokens.split(",")
        else:
            special_tokens = []
Mohammad's avatar
Mohammad committed
273
        self.tokenizer = GPT2Tokenizer(vocab_file, merge_file, errors='replace',
274
                                       special_tokens=special_tokens, max_len=None)
Mohammad's avatar
Mohammad committed
275
        self.eod_id = self.tokenizer.encoder['<|endoftext|>']
276

zihanl's avatar
zihanl committed
277
        if special_tokens is not None and len(special_tokens) > 0:
278
            if "[SEP]" in special_tokens:
279
                self.sep_id = self.tokenizer.special_tokens['[SEP]']
280
            if "[CTRL]" in special_tokens:
281
282
283
                self.ctrl_id = self.tokenizer.special_tokens['[CTRL]']
            if "[PAD]" in special_tokens:
                self.pad_id = self.tokenizer.special_tokens['[PAD]']
Mohammad's avatar
Mohammad committed
284
285
286
287
288

    @property
    def vocab_size(self):
        return len(self.tokenizer.encoder)

289
290
291
292
293
294
295
296
    @property
    def vocab(self):
        return self.tokenizer.encoder

    @property
    def inv_vocab(self):
        return self.tokenizer.decoder

Mohammad's avatar
Mohammad committed
297
298
299
    def tokenize(self, text):
        return self.tokenizer.encode(text)

300
301
302
    def detokenize(self, token_ids):
        return self.tokenizer.decode(token_ids)

Mohammad's avatar
Mohammad committed
303
304
305
    @property
    def eod(self):
        return self.eod_id