gpt_dataset.py 17.7 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2

3
"""GPT style dataset."""
Mohammad's avatar
Mohammad committed
4

5
import os
6
import time
Mohammad's avatar
Mohammad committed
7

8
import numpy as np
9
10
import torch

11
12
from megatron import print_rank_0
from megatron.core import mpu
mohammad's avatar
mohammad committed
13
14
from megatron.data.blendable_dataset import BlendableDataset
from megatron.data.dataset_utils import get_datasets_weights_and_num_samples
Neel Kant's avatar
Neel Kant committed
15
from megatron.data.dataset_utils import get_train_valid_test_split_
16
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
17
18


19
20
21
22
23
def build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                    train_valid_test_num_samples,
                                    seq_length, seed, skip_warmup):
    """Build train, valid, and test datasets."""

mohammad's avatar
mohammad committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    # Single dataset.
    if len(data_prefix) == 1:
        return _build_train_valid_test_datasets(data_prefix[0],
                                                data_impl, splits_string,
                                                train_valid_test_num_samples,
                                                seq_length, seed, skip_warmup)

    # Blending dataset.
    # Parse the values.
    output = get_datasets_weights_and_num_samples(data_prefix,
                                                  train_valid_test_num_samples)
    prefixes, weights, datasets_train_valid_test_num_samples = output

    # Build individual datasets.
    train_datasets = []
    valid_datasets = []
    test_datasets = []
    for i in range(len(prefixes)):
        train_ds, valid_ds, test_ds = _build_train_valid_test_datasets(
            prefixes[i], data_impl, splits_string,
            datasets_train_valid_test_num_samples[i],
            seq_length, seed, skip_warmup)
46
47
48
49
50
51
        if train_ds:
            train_datasets.append(train_ds)
        if valid_ds:
            valid_datasets.append(valid_ds)
        if test_ds:
            test_datasets.append(test_ds)
mohammad's avatar
mohammad committed
52
53

    # Blend.
54
55
56
57
58
59
60
61
62
    blending_train_dataset = None
    if train_datasets:
        blending_train_dataset = BlendableDataset(train_datasets, weights)
    blending_valid_dataset = None
    if valid_datasets:
        blending_valid_dataset = BlendableDataset(valid_datasets, weights)
    blending_test_dataset = None
    if test_datasets:
        blending_test_dataset = BlendableDataset(test_datasets, weights)
mohammad's avatar
mohammad committed
63
64
65
66
67
68
69
70

    return (blending_train_dataset, blending_valid_dataset,
            blending_test_dataset)


def _build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                     train_valid_test_num_samples,
                                     seq_length, seed, skip_warmup):
71
72
73
74
75
76
77
78
79
80
81
82
    """Build train, valid, and test datasets."""

    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
                                           skip_warmup)

    total_num_of_documents = indexed_dataset.sizes.shape[0]
    splits = get_train_valid_test_split_(splits_string, total_num_of_documents)

    # Print stats about the splits.
    print_rank_0(' > dataset split:')
Neel Kant's avatar
Neel Kant committed
83

84
85
86
87
88
89
90
91
92
93
94
95
    def print_split_stats(name, index):
        print_rank_0('    {}:'.format(name))
        print_rank_0('     document indices in [{}, {}) total of {} '
                     'documents'.format(splits[index], splits[index + 1],
                                        splits[index + 1] - splits[index]))
    print_split_stats('train', 0)
    print_split_stats('validation', 1)
    print_split_stats('test', 2)

    def build_dataset(index, name):
        dataset = None
        if splits[index + 1] > splits[index]:
Neel Kant's avatar
Neel Kant committed
96
            documents = np.arange(start=splits[index], stop=splits[index + 1],
97
                                  step=1, dtype=np.int32)
98
            dataset = GPTDataset(name, data_prefix,
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
                                  documents, indexed_dataset,
                                  train_valid_test_num_samples[index],
                                  seq_length, seed)
        return dataset

    train_dataset = build_dataset(0, 'train')
    valid_dataset = build_dataset(1, 'valid')
    test_dataset = build_dataset(2, 'test')

    return (train_dataset, valid_dataset, test_dataset)


def get_indexed_dataset_(data_prefix, data_impl, skip_warmup):
    """Build indexed dataset."""
    print_rank_0(' > building dataset index ...')

    start_time = time.time()
    indexed_dataset = make_indexed_dataset(data_prefix,
                                           data_impl,
                                           skip_warmup)
    print_rank_0(' > finished creating indexed dataset in {:4f} '
                 'seconds'.format(time.time() - start_time))
    print_rank_0('    number of documents: {}'.format(
        indexed_dataset.sizes.shape[0]))

    return indexed_dataset


127
class GPTDataset(torch.utils.data.Dataset):
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    def __init__(self, name, data_prefix, documents, indexed_dataset,
                 num_samples, seq_length, seed):

        self.name = name
        self.indexed_dataset = indexed_dataset

        # Checks
        assert np.min(documents) >= 0
        assert np.max(documents) < indexed_dataset.sizes.shape[0]

        # Build index mappings.
        self.doc_idx, self.sample_idx, self.shuffle_idx = _build_index_mappings(
            self.name, data_prefix, documents, self.indexed_dataset.sizes,
            num_samples, seq_length, seed)

144
    def __len__(self):
145
146
147
        # -1 is due to data structure used to retieve the index:
        #    sample i --> [sample_idx[i], sample_idx[i+1])
        return self.sample_idx.shape[0] - 1
148

149
    def __getitem__(self, idx):
150
151
152
153
        # Get the shuffled index.
        idx = self.shuffle_idx[idx]
        # Start and end documents and offsets.
        doc_index_f = self.sample_idx[idx][0]
Neel Kant's avatar
Neel Kant committed
154
        doc_index_l = self.sample_idx[idx + 1][0]
155
        offset_f = self.sample_idx[idx][1]
Neel Kant's avatar
Neel Kant committed
156
        offset_l = self.sample_idx[idx + 1][1]
157
158
159
160
161
162
163
164
165
166
        # If we are within the same document, just extract the chunk.
        if doc_index_f == doc_index_l:
            sample = self.indexed_dataset.get(self.doc_idx[doc_index_f],
                                              offset=offset_f,
                                              length=offset_l - offset_f + 1)
        else:
            # Otherwise, get the rest of the initial document.
            sample_list = [self.indexed_dataset.get(self.doc_idx[doc_index_f],
                                                    offset=offset_f)]
            # Loop over all in between documents and add the entire document.
Neel Kant's avatar
Neel Kant committed
167
            for i in range(doc_index_f + 1, doc_index_l):
168
169
170
171
                sample_list.append(self.indexed_dataset.get(self.doc_idx[i]))
            # And finally add the relevant portion of last document.
            sample_list.append(self.indexed_dataset.get(
                self.doc_idx[doc_index_l],
Neel Kant's avatar
Neel Kant committed
172
                length=offset_l + 1))
173
174
175
176
177
178
179
            sample = np.concatenate(sample_list)

        return {'text': np.array(sample, dtype=np.int64)}


def _build_index_mappings(name, data_prefix, documents, sizes,
                          num_samples, seq_length, seed):
180
181
182
183
184
185
    """Build doc-idx, sample-idx, and shuffle-idx.
    doc-idx: is an array (ordered) of documents to be used in training.
    sample-idx: is the start document index and document offset for each
       training sample.
    shuffle-idx: maps the sample index into a random index into sample-idx.
    """
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    # Number of tokens in each epoch and number of required epochs.
    tokens_per_epoch = _num_tokens(documents, sizes)
    num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples)
    # rng state
    np_rng = np.random.RandomState(seed=seed)

    # Filename of the index mappings.
    _filename = data_prefix
    _filename += '_{}_indexmap'.format(name)
    _filename += '_{}ns'.format(num_samples)
    _filename += '_{}sl'.format(seq_length)
    _filename += '_{}s'.format(seed)
    doc_idx_filename = _filename + '_doc_idx.npy'
    sample_idx_filename = _filename + '_sample_idx.npy'
    shuffle_idx_filename = _filename + '_shuffle_idx.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0:
        if (not os.path.isfile(doc_idx_filename)) or \
           (not os.path.isfile(sample_idx_filename)) or \
           (not os.path.isfile(shuffle_idx_filename)):

            print_rank_0(' > WARNING: could not find index map files, building '
                         'the indices on rank 0 ...')
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

            # For the last epoch, decide whether include the entire epoch
            # in the global shuffle or not.

            # If we need only one epoch, then separating last epoch  does
            # not mean anything.
            if num_epochs == 1:
                separate_last_epoch = False
                print(' > only one epoch required, setting '
                      'separate_last_epoch to False', flush=True)

            else:
                # Get the number of samples for the last epoch
                num_samples_from_epochs_minus_one = (
                    (num_epochs - 1) * tokens_per_epoch - 1) // seq_length
                last_epoch_num_samples = num_samples - \
                                         num_samples_from_epochs_minus_one
                assert last_epoch_num_samples >= 0, \
                    'last epoch number of samples should be non-negative.'
                num_samples_per_epoch = (tokens_per_epoch - 1) // seq_length
                assert last_epoch_num_samples < (num_samples_per_epoch + 1), \
                    'last epoch number of samples exceeded max value.'
                # If we have less than 80% of the samples for the last epoch,
                # seperate out the epoch and treat it differently.
234
235
                # Note: the 80% number is just based on common sense and can
                # be adjusted if needed.
236
237
238
239
240
241
242
243
244
245
246
247
248
                separate_last_epoch = (last_epoch_num_samples <
                                       int(0.80 * num_samples_per_epoch))
                if separate_last_epoch:
                    string = ' > last epoch number of samples ({}) is smaller '\
                             'than 80% of number of samples per epoch ({}), '\
                             'setting separate_last_epoch to True'
                else:
                    string = ' > last epoch number of samples ({}) is larger '\
                             'than 80% of number of samples per epoch ({}), '\
                             'setting separate_last_epoch to False'
                print(string.format(last_epoch_num_samples,
                                    num_samples_per_epoch), flush=True)

249
250
            # doc-idx.
            start_time = time.time()
251
252
            doc_idx = _build_doc_idx(documents, num_epochs, np_rng,
                                     separate_last_epoch)
253
254
255
256
257
258
            np.save(doc_idx_filename, doc_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save doc-idx mapping '
                         '(seconds): {:4f}'.format(time.time() - start_time))
            # sample-idx.
            start_time = time.time()
            # Use C++ implementation for speed.
259
            # First compile and then import.
260
261
262
263
264
            from megatron.data import helpers
            assert doc_idx.dtype == np.int32
            assert sizes.dtype == np.int32
            sample_idx = helpers.build_sample_idx(sizes, doc_idx, seq_length,
                                                  num_epochs, tokens_per_epoch)
Neel Kant's avatar
Neel Kant committed
265
            # sample_idx = _build_sample_idx(sizes, doc_idx, seq_length,
266
267
268
269
270
271
            #                               num_epochs, tokens_per_epoch)
            np.save(sample_idx_filename, sample_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save sample-idx mapping '
                         '(seconds): {:4f}'.format(time.time() - start_time))
            # shuffle-idx.
            start_time = time.time()
272
273
            # -1 is due to data structure used to retieve the index:
            #    sample i --> [sample_idx[i], sample_idx[i+1])
274
275
276
277
278
279
            if separate_last_epoch:
                num_samples_ = num_samples_from_epochs_minus_one
            else:
                num_samples_ = sample_idx.shape[0] - 1
            shuffle_idx = _build_shuffle_idx(num_samples_,
                                             sample_idx.shape[0] - 1, np_rng)
280
281
282
283
284
285
286
287
288
            np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True)
            print_rank_0(' > elasped time to build and save shuffle-idx mapping'
                         ' (seconds): {:4f}'.format(time.time() - start_time))

    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
289
    torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group())
290
291
    assert counts[0].item() == (
        torch.distributed.get_world_size() //
292
        torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group()))
293
294
295
296
297

    # Load mappings.
    start_time = time.time()
    print_rank_0(' > loading doc-idx mapping from {}'.format(
        doc_idx_filename))
Raul Puri's avatar
Raul Puri committed
298
    doc_idx = np.load(doc_idx_filename, allow_pickle=True, mmap_mode='r')
299
300
    print_rank_0(' > loading sample-idx mapping from {}'.format(
        sample_idx_filename))
Raul Puri's avatar
Raul Puri committed
301
    sample_idx = np.load(sample_idx_filename, allow_pickle=True, mmap_mode='r')
302
303
    print_rank_0(' > loading shuffle-idx mapping from {}'.format(
        shuffle_idx_filename))
Raul Puri's avatar
Raul Puri committed
304
    shuffle_idx = np.load(shuffle_idx_filename, allow_pickle=True, mmap_mode='r')
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
        sample_idx.shape[0]))
    print_rank_0('    total number of epochs: {}'.format(num_epochs))

    return doc_idx, sample_idx, shuffle_idx


def _num_tokens(documents, sizes):
    """Total number of tokens in the dataset."""
    return np.sum(sizes[documents])


def _num_epochs(tokens_per_epoch, seq_length, num_samples):
    """Based on number of samples and sequence lenght, calculate how many
    epochs will be needed."""
    num_epochs = 0
    total_tokens = 0
    while True:
        num_epochs += 1
        total_tokens += tokens_per_epoch
        # -1 is because we need to retrieve seq_length + 1 token each time
        # but the last token will overlap with the first token of the next
        # sample except for the last sample.
        if ((total_tokens - 1) // seq_length) >= num_samples:
            return num_epochs


334
def _build_doc_idx(documents, num_epochs, np_rng, separate_last_epoch):
335
336
    """Build an array with length = number-of-epochs * number-of-dcuments.
    Each index is mapped to a corresponding document."""
337
338
339
340
341
342
343
344
345
346
347
    if not separate_last_epoch or num_epochs == 1:
        doc_idx = np.mgrid[0:num_epochs, 0:len(documents)][1]
        doc_idx[:] = documents
        doc_idx = doc_idx.reshape(-1)
        doc_idx = doc_idx.astype(np.int32)
        np_rng.shuffle(doc_idx)
        return doc_idx

    doc_idx_first = _build_doc_idx(documents, num_epochs-1, np_rng, False)
    doc_idx_last = _build_doc_idx(documents, 1, np_rng, False)
    return np.concatenate((doc_idx_first, doc_idx_last))
348
349
350
351
352
353


def _build_sample_idx(sizes, doc_idx, seq_length,
                      num_epochs, tokens_per_epoch):
    """Sample index mapping is a 2D array with sizes
    [number-of-samples + 1, 2] where [..., 0] contains
Mohammad's avatar
Mohammad committed
354
    the index into `doc_idx` and [..., 1] is the
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    starting offset in that document."""

    # Total number of samples. For -1 see comments in `_num_epochs`.
    num_samples = (num_epochs * tokens_per_epoch - 1) // seq_length
    sample_idx = np.zeros([num_samples + 1, 2], dtype=np.int32)

    # Index into sample_idx.
    sample_index = 0
    # Index into doc_idx.
    doc_idx_index = 0
    # Begining offset for each document.
    doc_offset = 0
    # Start with first document and no offset.
    sample_idx[sample_index][0] = doc_idx_index
    sample_idx[sample_index][1] = doc_offset
    sample_index += 1
    while sample_index <= num_samples:
        # Start with a fresh sequence.
        remaining_seq_length = seq_length + 1
        while remaining_seq_length != 0:
            # Get the document length.
            doc_id = doc_idx[doc_idx_index]
            doc_length = sizes[doc_id] - doc_offset
            # And add it to the current sequence.
            remaining_seq_length -= doc_length
            # If we have more than a full sequence, adjust offset and set
            # remaining length to zero so we return from the while loop.
            # Note that -1 here is for the same reason we have -1 in
            # `_num_epochs` calculations.
            if remaining_seq_length <= 0:
                doc_offset += (remaining_seq_length + doc_length - 1)
                remaining_seq_length = 0
            else:
                # Otherwise, start from the begining of the next document.
                doc_idx_index += 1
                doc_offset = 0
        # Record the sequence.
        sample_idx[sample_index][0] = doc_idx_index
        sample_idx[sample_index][1] = doc_offset
        sample_index += 1

    return sample_idx


mshoeybi's avatar
mshoeybi committed
399
def _build_shuffle_idx(num_samples, total_size, np_rng):
400
    """Build the range [0, size) and shuffle."""
401
402
403
    print(' > building shuffle index with split [0, {}) and [{}, {}) '
          '...'.format(num_samples, num_samples, total_size), flush=True)
    
404
    dtype_ = np.uint32
405
    if total_size >= (np.iinfo(np.uint32).max - 1):
406
        dtype_ = np.int64
407
408
409
410
411
412
413
414
415
416
417
418

    shuffle_idx_first = np.arange(start=0, stop=num_samples,
                                  step=1, dtype=dtype_)
    np_rng.shuffle(shuffle_idx_first)
    if num_samples == total_size:
        return shuffle_idx_first

    shuffle_idx_last = np.arange(start=num_samples, stop=total_size,
                                 step=1, dtype=dtype_)
    np_rng.shuffle(shuffle_idx_last)

    return np.concatenate((shuffle_idx_first, shuffle_idx_last))