parallel_state.py 22.5 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4
5

"""Model and data parallel groups."""

import torch
6
from typing import Optional
7

8
9
from .utils import GlobalMemoryBuffer

10
# Intra-layer model parallel group that the current rank belongs to.
11
_TENSOR_MODEL_PARALLEL_GROUP = None
12
# Inter-layer model parallel group that the current rank belongs to.
13
14
_PIPELINE_MODEL_PARALLEL_GROUP = None
# Model parallel group (both intra- and pipeline) that the current rank belongs to.
15
_MODEL_PARALLEL_GROUP = None
16
17
# Embedding group.
_EMBEDDING_GROUP = None
Vijay Korthikanti's avatar
Vijay Korthikanti committed
18
# Position embedding group.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
19
_POSITION_EMBEDDING_GROUP = None
20
21
22
# Data parallel group that the current rank belongs to.
_DATA_PARALLEL_GROUP = None

23
24
_VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None
_VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
25
_PIPELINE_MODEL_PARALLEL_SPLIT_RANK = None
26

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
27
# These values enable us to change the mpu sizes on the fly.
28
29
30
31
_MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
_MPU_TENSOR_MODEL_PARALLEL_RANK = None
_MPU_PIPELINE_MODEL_PARALLEL_RANK = None
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
32

33
34
35
# A list of ranks that have a copy of the embedding.
_EMBEDDING_GLOBAL_RANKS = None

Vijay Korthikanti's avatar
Vijay Korthikanti committed
36
37
38
# A list of ranks that have a copy of the position embedding.
_POSITION_EMBEDDING_GLOBAL_RANKS = None

39
# A list of global ranks for each pipeline group to ease calculation of the source
40
# rank when broadcasting from the first or last pipeline stage.
41
_PIPELINE_GLOBAL_RANKS = None
42

43
44
45
46
# A list of global ranks for each data parallel group to ease calculation of the source
# rank when broadcasting weights from src to all other data parallel ranks
_DATA_PARALLEL_GLOBAL_RANKS = None

47
48
# Memory buffers to avoid dynamic memory allocation
_GLOBAL_MEMORY_BUFFER = None
49

50

51
52
53
54
55
56
def initialize_model_parallel(
    tensor_model_parallel_size: int = 1,
    pipeline_model_parallel_size: int = 1,
    virtual_pipeline_model_parallel_size: Optional[int] = None,
    pipeline_model_parallel_split_rank: Optional[int] = None,
) -> None:
57
58
59
60
    """
    Initialize model data parallel groups.

    Arguments:
61
62
63
64
65
66
67
        tensor_model_parallel_size: number of GPUs used for tensor model parallelism.
        pipeline_model_parallel_size: number of GPUs used for pipeline model parallelism.
        virtual_pipeline_model_parallel_size: number of virtual stages (interleaved
                                              pipeline).
        pipeline_model_parallel_split_rank: for models with both encoder and decoder,
                                            rank in pipeline with split point.

68
    Let's say we have a total of 16 GPUs denoted by g0 ... g15 and we
69
70
71
    use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
    the model pipeline. The present function will
    create 8 tensor model-parallel groups, 4 pipeline model-parallel groups
72
73
74
    and 8 data-parallel groups as:
        8 data_parallel groups:
            [g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15]
75
        8 tensor model-parallel groups:
76
            [g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15]
77
        4 pipeline model-parallel groups:
78
            [g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15]
79
80
81
82
83
84
85
    Note that for efficiency, the caller should make sure adjacent ranks
    are on the same DGX box. For example if we are using 2 DGX-1 boxes
    with a total of 16 GPUs, rank 0 to 7 belong to the first box and
    ranks 8 to 15 belong to the second box.
    """
    # Get world size and rank. Ensure some consistencies.
    assert torch.distributed.is_initialized()
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    world_size: int = torch.distributed.get_world_size()

    if world_size % (tensor_model_parallel_size * pipeline_model_parallel_size) != 0:
        raise RuntimeError(
            f"world_size ({world_size}) is not divisible by tensor_model_parallel_size ({tensor_model_parallel_size}) x pipeline_model_parallel_size ({pipeline_model_parallel_size})"
        )

    data_parallel_size: int = world_size // (tensor_model_parallel_size *
                                             pipeline_model_parallel_size)

    num_tensor_model_parallel_groups: int  = world_size // tensor_model_parallel_size
    num_pipeline_model_parallel_groups: int = world_size // pipeline_model_parallel_size
    num_data_parallel_groups: int = world_size // data_parallel_size

    if virtual_pipeline_model_parallel_size is not None:
101
102
103
        global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
        global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
        _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = 0
104
        _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = virtual_pipeline_model_parallel_size
105

106
    if pipeline_model_parallel_split_rank is not None:
107
        global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
108
        _PIPELINE_MODEL_PARALLEL_SPLIT_RANK = pipeline_model_parallel_split_rank
109

110
111
    rank = torch.distributed.get_rank()

112
    # Build the data-parallel groups.
113
    global _DATA_PARALLEL_GROUP
114
    global _DATA_PARALLEL_GLOBAL_RANKS
115
    assert _DATA_PARALLEL_GROUP is None, 'data parallel group is already initialized'
116
    all_data_parallel_group_ranks = []
117
118
119
120
    for i in range(pipeline_model_parallel_size):
        start_rank = i * num_pipeline_model_parallel_groups
        end_rank = (i + 1) * num_pipeline_model_parallel_groups
        for j in range(tensor_model_parallel_size):
121
            ranks = range(start_rank + j, end_rank, tensor_model_parallel_size)
122
123
124
125
            all_data_parallel_group_ranks.append(list(ranks))
            group = torch.distributed.new_group(ranks)
            if rank in ranks:
                _DATA_PARALLEL_GROUP = group
126
                _DATA_PARALLEL_GLOBAL_RANKS = ranks
127
128

    # Build the model-parallel groups.
129
    global _MODEL_PARALLEL_GROUP
130
    assert _MODEL_PARALLEL_GROUP is None, 'model parallel group is already initialized'
131
132
133
    for i in range(data_parallel_size):
        ranks = [data_parallel_group_ranks[i]
                 for data_parallel_group_ranks in all_data_parallel_group_ranks]
134
        group = torch.distributed.new_group(ranks)
135
        if rank in ranks:
136
137
            _MODEL_PARALLEL_GROUP = group

138
139
140
141
142
143
144
    # Build the tensor model-parallel groups.
    global _TENSOR_MODEL_PARALLEL_GROUP
    assert _TENSOR_MODEL_PARALLEL_GROUP is None, \
        'tensor model parallel group is already initialized'
    for i in range(num_tensor_model_parallel_groups):
        ranks = range(i * tensor_model_parallel_size,
                      (i + 1) * tensor_model_parallel_size)
145
146
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
147
            _TENSOR_MODEL_PARALLEL_GROUP = group
148

149
150
151
    # Build the pipeline model-parallel groups and embedding groups
    # (first and last rank in each pipeline model-parallel group).
    global _PIPELINE_MODEL_PARALLEL_GROUP
152
    global _PIPELINE_GLOBAL_RANKS
153
154
    assert _PIPELINE_MODEL_PARALLEL_GROUP is None, \
        'pipeline model parallel group is already initialized'
155
    global _EMBEDDING_GROUP
156
    global _EMBEDDING_GLOBAL_RANKS
157
    assert _EMBEDDING_GROUP is None, 'embedding group is already initialized'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
158
159
160
161
    global _POSITION_EMBEDDING_GROUP
    global _POSITION_EMBEDDING_GLOBAL_RANKS
    assert _POSITION_EMBEDDING_GROUP is None, \
        'position embedding group is already initialized'
162
    for i in range(num_pipeline_model_parallel_groups):
163
        ranks = range(i, world_size, num_pipeline_model_parallel_groups)
164
165
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
166
            _PIPELINE_MODEL_PARALLEL_GROUP = group
167
            _PIPELINE_GLOBAL_RANKS = ranks
168
169
170
171
        # Setup embedding group (to exchange gradients between
        # first and last stages).
        if len(ranks) > 1:
            embedding_ranks = [ranks[0], ranks[-1]]
Vijay Korthikanti's avatar
Vijay Korthikanti committed
172
173
174
175
176
177
178
179
180
            position_embedding_ranks = [ranks[0]]
            if pipeline_model_parallel_split_rank_ is not None:
                if ranks[pipeline_model_parallel_split_rank_] not in embedding_ranks:
                    embedding_ranks = [ranks[0],
                                       ranks[pipeline_model_parallel_split_rank_],
                                       ranks[-1]]
                if ranks[pipeline_model_parallel_split_rank_] not in position_embedding_ranks:
                    position_embedding_ranks = [ranks[0],
                                       ranks[pipeline_model_parallel_split_rank_]]
181
182
        else:
            embedding_ranks = ranks
Vijay Korthikanti's avatar
Vijay Korthikanti committed
183
184
            position_embedding_ranks = ranks

185
186
187
        group = torch.distributed.new_group(embedding_ranks)
        if rank in embedding_ranks:
            _EMBEDDING_GROUP = group
188
189
        if rank in ranks:
            _EMBEDDING_GLOBAL_RANKS = embedding_ranks
190

Vijay Korthikanti's avatar
Vijay Korthikanti committed
191
192
193
194
        group = torch.distributed.new_group(position_embedding_ranks)
        if rank in position_embedding_ranks:
            _POSITION_EMBEDDING_GROUP = group
        if rank in ranks:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
195
            _POSITION_EMBEDDING_GLOBAL_RANKS = position_embedding_ranks
Vijay Korthikanti's avatar
Vijay Korthikanti committed
196

197
198
199
200
201
202
    # Initialize global memory buffer
    # This isn't really "parallel state" but there isn't another good place to
    # put this. If we end up with a more generic initialization of megatron-core
    # we could stick it there
    _set_global_memory_buffer()

203
204
205

def model_parallel_is_initialized():
    """Check if model and data parallel groups are initialized."""
206
207
    if _TENSOR_MODEL_PARALLEL_GROUP is None or \
        _PIPELINE_MODEL_PARALLEL_GROUP is None or \
208
        _DATA_PARALLEL_GROUP is None:
209
210
211
212
213
214
215
216
217
218
219
        return False
    return True


def get_model_parallel_group():
    """Get the model parallel group the caller rank belongs to."""
    assert _MODEL_PARALLEL_GROUP is not None, \
        'model parallel group is not initialized'
    return _MODEL_PARALLEL_GROUP


220
221
222
def get_tensor_model_parallel_group():
    """Get the tensor model parallel group the caller rank belongs to."""
    assert _TENSOR_MODEL_PARALLEL_GROUP is not None, \
223
        'intra_layer_model parallel group is not initialized'
224
    return _TENSOR_MODEL_PARALLEL_GROUP
225
226


227
228
229
230
231
def get_pipeline_model_parallel_group():
    """Get the pipeline model parallel group the caller rank belongs to."""
    assert _PIPELINE_MODEL_PARALLEL_GROUP is not None, \
        'pipeline_model parallel group is not initialized'
    return _PIPELINE_MODEL_PARALLEL_GROUP
232
233


234
235
236
237
238
239
240
def get_data_parallel_group():
    """Get the data parallel group the caller rank belongs to."""
    assert _DATA_PARALLEL_GROUP is not None, \
        'data parallel group is not initialized'
    return _DATA_PARALLEL_GROUP


241
242
243
244
245
246
247
def get_embedding_group():
    """Get the embedding group the caller rank belongs to."""
    assert _EMBEDDING_GROUP is not None, \
        'embedding group is not initialized'
    return _EMBEDDING_GROUP


Vijay Korthikanti's avatar
Vijay Korthikanti committed
248
249
250
251
252
253
254
def get_position_embedding_group():
    """Get the position embedding group the caller rank belongs to."""
    assert _POSITION_EMBEDDING_GROUP is not None, \
        'position embedding group is not initialized'
    return _POSITION_EMBEDDING_GROUP


255
256
257
258
def set_tensor_model_parallel_world_size(world_size):
    """Set the tensor model parallel size"""
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = world_size
259
260


261
262
263
264
def set_pipeline_model_parallel_world_size(world_size):
    """Set the pipeline model parallel size"""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = world_size
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
265
266


267
268
269
270
271
272
def get_tensor_model_parallel_world_size():
    """Return world size for the tensor model parallel group."""
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_tensor_model_parallel_group())
273
274


275
276
277
278
279
280
def get_pipeline_model_parallel_world_size():
    """Return world size for the pipeline model parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    if _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    return torch.distributed.get_world_size(group=get_pipeline_model_parallel_group())
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
281
282


283
284
285
286
def set_tensor_model_parallel_rank(rank):
    """Set tensor model parallel rank."""
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    _MPU_TENSOR_MODEL_PARALLEL_RANK = rank
287
288


289
290
291
292
def set_pipeline_model_parallel_rank(rank):
    """Set pipeline model parallel rank."""
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    _MPU_PIPELINE_MODEL_PARALLEL_RANK = rank
293
294


295
296
297
298
299
300
def get_tensor_model_parallel_rank():
    """Return my rank for the tensor model parallel group."""
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    if _MPU_TENSOR_MODEL_PARALLEL_RANK is not None:
        return _MPU_TENSOR_MODEL_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_tensor_model_parallel_group())
301
302


303
304
305
306
307
308
def get_pipeline_model_parallel_rank():
    """Return my rank for the pipeline model parallel group."""
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    if _MPU_PIPELINE_MODEL_PARALLEL_RANK is not None:
        return _MPU_PIPELINE_MODEL_PARALLEL_RANK
    return torch.distributed.get_rank(group=get_pipeline_model_parallel_group())
309
310


311
312
313
314
315
def get_num_layers(args, is_encoder_and_decoder_model):
    """Compute the number of transformer layers resident on the current rank."""
    if get_pipeline_model_parallel_world_size() > 1:
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None
Lawrence McAfee's avatar
Lawrence McAfee committed
316
317
318
319
320

            # When a standalone embedding stage is used, a rank is taken from
            # the encoder's ranks, to be used for the encoder's embedding
            # layer. This way, the rank referenced by the 'split rank' remains
            # the same whether or not a standalone embedding stage is used.
321
322
            num_ranks_in_encoder = (
                args.pipeline_model_parallel_split_rank - 1
323
                if args.standalone_embedding_stage else
324
325
326
                args.pipeline_model_parallel_split_rank
            )
            num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder
327
            assert args.num_layers % num_ranks_in_encoder == 0, \
328
                    'num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.num_layers, num_ranks_in_encoder)
329
            assert args.num_layers % num_ranks_in_decoder == 0, \
330
                    'num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.num_layers, num_ranks_in_decoder)
Lawrence McAfee's avatar
Lawrence McAfee committed
331
            if is_pipeline_stage_before_split():
Lawrence McAfee's avatar
Lawrence McAfee committed
332
333
334
335
336
337
                num_layers = (
                    0
                    if args.standalone_embedding_stage
                    and get_pipeline_model_parallel_rank() == 0 else
                    args.num_layers // num_ranks_in_encoder
                )
338
339
340
            else:
                num_layers = args.num_layers // num_ranks_in_decoder
        else:
Lawrence McAfee's avatar
Lawrence McAfee committed
341
342
            assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
                'num_layers must be divisible by transformer_pipeline_model_parallel_size'
Lawrence McAfee's avatar
Lawrence McAfee committed
343
344
345
346
347

            # When a standalone embedding stage is used, all transformer layers
            # are divided among pipeline rank >= 1, while on pipeline rank 0,
            # ranks either contain the input embedding layer (virtual pp rank 0),
            # or no layers at all (virtual pp rank >= 1).
Lawrence McAfee's avatar
Lawrence McAfee committed
348
349
            num_layers = (
                0
350
                if args.standalone_embedding_stage
Lawrence McAfee's avatar
Lawrence McAfee committed
351
                and get_pipeline_model_parallel_rank() == 0 else
Lawrence McAfee's avatar
Lawrence McAfee committed
352
                args.num_layers // args.transformer_pipeline_model_parallel_size
Lawrence McAfee's avatar
Lawrence McAfee committed
353
            )
354
355
356
357
358
    else:
        num_layers = args.num_layers
    return num_layers


359
def is_pipeline_first_stage(ignore_virtual=False):
360
    """Return True if in the first pipeline model-parallel stage, False otherwise."""
361
    if not ignore_virtual:
362
363
        if get_virtual_pipeline_model_parallel_world_size() is not None and \
            get_virtual_pipeline_model_parallel_rank() != 0:
364
            return False
365
    return get_pipeline_model_parallel_rank() == 0
366
367


368
def is_pipeline_last_stage(ignore_virtual=False):
369
    """Return True if in the last pipeline model-parallel stage, False otherwise."""
370
    if not ignore_virtual:
371
372
373
374
375
        virtual_pipeline_model_parallel_world_size = \
            get_virtual_pipeline_model_parallel_world_size()
        if virtual_pipeline_model_parallel_world_size is not None and \
            get_virtual_pipeline_model_parallel_rank() != (
                virtual_pipeline_model_parallel_world_size - 1):
376
            return False
377
378
    return get_pipeline_model_parallel_rank() == (
        get_pipeline_model_parallel_world_size() - 1)
379
380


381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
def is_rank_in_embedding_group(ignore_virtual=False):
    """Return true if current rank is in embedding group, False otherwise."""
    rank = torch.distributed.get_rank()
    global _EMBEDDING_GLOBAL_RANKS
    if ignore_virtual:
        return rank in _EMBEDDING_GLOBAL_RANKS
    if rank in _EMBEDDING_GLOBAL_RANKS:
        if rank == _EMBEDDING_GLOBAL_RANKS[0]:
            return is_pipeline_first_stage(ignore_virtual=False)
        elif rank == _EMBEDDING_GLOBAL_RANKS[-1]:
            return is_pipeline_last_stage(ignore_virtual=False)
        else:
            return True
    return False


Vijay Korthikanti's avatar
Vijay Korthikanti committed
397
398
399
400
401
402
403
def is_rank_in_position_embedding_group():
    """Return true if current rank is in position embedding group, False otherwise."""
    rank = torch.distributed.get_rank()
    global _POSITION_EMBEDDING_GLOBAL_RANKS
    return rank in _POSITION_EMBEDDING_GLOBAL_RANKS


404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
def is_pipeline_stage_before_split(rank=None):
    """Return True if pipeline stage executes encoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
        return True
    if rank < _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
        return True
    return False


def is_pipeline_stage_after_split(rank=None):
    """Return True if pipeline stage executes decoder block for a model
    with both encoder and decoder."""
    if get_pipeline_model_parallel_world_size() == 1:
        return True
    if rank is None:
        rank = get_pipeline_model_parallel_rank()
    global _PIPELINE_MODEL_PARALLEL_SPLIT_RANK
    if _PIPELINE_MODEL_PARALLEL_SPLIT_RANK is None:
        return True
    if rank >= _PIPELINE_MODEL_PARALLEL_SPLIT_RANK:
        return True
    return False


def is_pipeline_stage_at_split():
    """Return true if pipeline stage executes decoder block and next
    stage executes encoder block for a model with both encoder and
    decoder."""
    rank = get_pipeline_model_parallel_rank()
    return is_pipeline_stage_before_split(rank) and \
            is_pipeline_stage_after_split(rank+1)


443
444
445
446
447
448
449
450
451
452
453
454
def get_virtual_pipeline_model_parallel_rank():
    """Return the virtual pipeline-parallel rank."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    return _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK


def set_virtual_pipeline_model_parallel_rank(rank):
    """Set the virtual pipeline-parallel rank."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = rank


455
456
457
458
459
460
def get_virtual_pipeline_model_parallel_world_size():
    """Return the virtual pipeline-parallel world size."""
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    return _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE


461
def get_tensor_model_parallel_src_rank():
462
    """Calculate the global rank corresponding to the first local rank
463
    in the tensor model parallel group."""
464
    global_rank = torch.distributed.get_rank()
465
    local_world_size = get_tensor_model_parallel_world_size()
466
467
    return (global_rank // local_world_size) * local_world_size

468

469
470
def get_data_parallel_src_rank():
    """Calculate the global rank corresponding to the first local rank
471
472
473
474
    in the data parallel group."""
    assert _DATA_PARALLEL_GLOBAL_RANKS is not None, \
        "Data parallel group is not initialized"
    return _DATA_PARALLEL_GLOBAL_RANKS[0]
475
476


477
478
479
480
481
def get_pipeline_model_parallel_first_rank():
    assert _PIPELINE_GLOBAL_RANKS is not None, \
        "Pipeline parallel group is not initialized"
    return _PIPELINE_GLOBAL_RANKS[0]

482

483
484
485
486
487
def get_pipeline_model_parallel_last_rank():
    assert _PIPELINE_GLOBAL_RANKS is not None, \
        "Pipeline parallel group is not initialized"
    last_rank_local = get_pipeline_model_parallel_world_size() - 1
    return _PIPELINE_GLOBAL_RANKS[last_rank_local]
488

489
def get_pipeline_model_parallel_next_rank():
490
491
    assert _PIPELINE_GLOBAL_RANKS is not None, \
        "Pipeline parallel group is not initialized"
492
493
494
495
    rank_in_pipeline = get_pipeline_model_parallel_rank()
    world_size = get_pipeline_model_parallel_world_size()
    return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline + 1) % world_size]

496

497
498
499
500
501
502
def get_pipeline_model_parallel_prev_rank():
    assert _PIPELINE_GLOBAL_RANKS is not None, \
        "Pipeline parallel group is not initialized"
    rank_in_pipeline = get_pipeline_model_parallel_rank()
    world_size = get_pipeline_model_parallel_world_size()
    return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline - 1) % world_size]
503

504

505
506
507
508
509
510
511
512
513
def get_data_parallel_world_size():
    """Return world size for the data parallel group."""
    return torch.distributed.get_world_size(group=get_data_parallel_group())


def get_data_parallel_rank():
    """Return my rank for the data parallel group."""
    return torch.distributed.get_rank(group=get_data_parallel_group())

514
515
516
517
518
519
520
521
522
523
524
525
def _set_global_memory_buffer():
    """Initialize global buffer"""
    global _GLOBAL_MEMORY_BUFFER
    assert _GLOBAL_MEMORY_BUFFER is None, 'global memory buffer is already initialized'
    _GLOBAL_MEMORY_BUFFER = GlobalMemoryBuffer()

def get_global_memory_buffer():
    assert _GLOBAL_MEMORY_BUFFER is not None, 'global memory buffer is not initialized'
    return _GLOBAL_MEMORY_BUFFER



526
527
def destroy_model_parallel():
    """Set the groups to none."""
528
529
    global _MODEL_PARALLEL_GROUP
    _MODEL_PARALLEL_GROUP = None
530
531
532
533
    global _TENSOR_MODEL_PARALLEL_GROUP
    _TENSOR_MODEL_PARALLEL_GROUP = None
    global _PIPELINE_MODEL_PARALLEL_GROUP
    _PIPELINE_MODEL_PARALLEL_GROUP = None
534
535
    global _DATA_PARALLEL_GROUP
    _DATA_PARALLEL_GROUP = None
536
537
    global _EMBEDDING_GROUP
    _EMBEDDING_GROUP = None
Vijay Korthikanti's avatar
Vijay Korthikanti committed
538
539
    global _POSITION_EMBEDDING_GROUP
    _POSITION_EMBEDDING_GROUP = None
540
541
542
543
544
545
546
547
548
549
550
551
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None
    global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE
    _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE
    _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None
    global _MPU_TENSOR_MODEL_PARALLEL_RANK
    _MPU_TENSOR_MODEL_PARALLEL_RANK = None
    global _MPU_PIPELINE_MODEL_PARALLEL_RANK
    _MPU_PIPELINE_MODEL_PARALLEL_RANK = None