prompt.py 11.4 KB
Newer Older
zihanl's avatar
zihanl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
zihanl's avatar
zihanl committed
15

zihanl's avatar
zihanl committed
16
17
"""Prompting the pretrained language model to generate knowledge/response"""

zihanl's avatar
zihanl committed
18
19
import json
import torch
zihanl's avatar
zihanl committed
20
import requests
zihanl's avatar
zihanl committed
21
22
23
24
25
26
27
28
29
from nltk import word_tokenize
from megatron import mpu
from megatron import get_args
from megatron import print_rank_0
from megatron import get_tokenizer
from megatron.model import GPTModel
from megatron.training import get_model
from megatron.checkpointing import load_checkpoint
from megatron.initialize import initialize_megatron
zihanl's avatar
zihanl committed
30
from megatron.text_generation import generate_and_post_process
zihanl's avatar
zihanl committed
31
32


zihanl's avatar
zihanl committed
33
def call_model_api(inputs, tokens_to_generate):
zihanl's avatar
zihanl committed
34
    """Calling the model api to get the output generations"""
zihanl's avatar
zihanl committed
35
36
37
38
39
40
41
42
43
    
    args = get_args()

    # The following is an example of using the Megatron API
    # You can also implement your own API function to place this part
    headers = {'Content-Type': 'application/json; charset=UTF-8'}
    data = {"prompts": [inputs], "tokens_to_generate": tokens_to_generate, "top_k": 1}
    data_json = json.dumps(data)
    outputs = requests.put(args.megatron_api_url, headers=headers, data=data_json).json()["text"][0]
zihanl's avatar
zihanl committed
44

zihanl's avatar
zihanl committed
45
46
47
48
49
    input_len = len(inputs)
    outputs = outputs[input_len:]
    outputs = outputs.split("\n")[0].strip()
    
    return outputs
zihanl's avatar
zihanl committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107


def read_prompts(prompt_path, prompt_type, n_example):
    """Read prompt data"""

    if prompt_type == "knowledge":
        # prompts for the knowledge generation
        prompt_examples_dict = {}
        # read prompt_path
        with open(prompt_path, "r") as f:
            for i, line in enumerate(f):
                line = line.strip()
                line_dict = json.loads(line)
                key = list(line_dict.keys())[0]
                
                if key not in prompt_examples_dict:
                    prompt_examples = line_dict[key]
                    prompt = ""
                    for instance in prompt_examples:
                        instance = instance.strip()
                        prompt += instance + " \n"
                    prompt_examples_dict[key] = prompt

        return prompt_examples_dict

    else:
        # prompts for the response generation
        # read prompt_path
        prompt = ""
        with open(prompt_path, "r") as f:
            prompt_examples = f.readlines()
            prompt_examples = prompt_examples[:n_example]
            for instance in prompt_examples:
                instance = instance.strip()
                prompt += instance + " \n"

        return prompt


def generate_samples_by_calling_api():
    """ Generate outputs by calling"""
    args = get_args()
    assert args.prompt_type in ["knowledge", "response"], \
                "Please input a correct prompt type!"

    if args.prompt_type == "knowledge":
        # read knowledge generation prompts
        knwl_gen_prompt_dict = read_prompts(
            args.prompt_file, args.prompt_type, args.num_prompt_examples)
        
    else:
        resp_gen_prompt = read_prompts(
            args.prompt_file, args.prompt_type, args.num_prompt_examples)

    # read the test data
    fname = open(args.sample_input_file, "r")
    test_sample_list = fname.readlines()
    # create output file
zihanl's avatar
zihanl committed
108
    fname_out = open(args.sample_output_file, "w")
zihanl's avatar
zihanl committed
109
110
111
112

    # call the api to get the output generations
    for test_sample in test_sample_list:
        test_sample = test_sample.strip()
zihanl's avatar
zihanl committed
113
        splits = test_sample.split("\t")
zihanl's avatar
zihanl committed
114
115
116
117
        topic = splits[0]

        # prepare the inputs for the api
        if args.prompt_type == "knowledge":
zihanl's avatar
zihanl committed
118
            ## inputs = prompt + current test
zihanl's avatar
zihanl committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
            # get the prompt
            turns = splits[1].split(" [SEP] ")
            last_turn = turns[-1]
            key = topic + " " + last_turn
            inputs = knwl_gen_prompt_dict[key]

            # add current test
            inputs += "( " + last_turn + " ) " + topic + " =>"

        else:
            # inputs = prompt + current test
            # get the prompt
            inputs = resp_gen_prompt

            # add current test
            turns = splits[1].split(" [SEP] ")
            knowledge = splits[2]
            last_turn = turns[-1]
            last_turn = " ".join(word_tokenize(last_turn))
            knowledge = " ".join(word_tokenize(knowledge))
            knowledge = knowledge.strip()
            last_turn = last_turn.strip()
            inputs += "Topic: " + topic + ". "
            inputs += "User says: " + last_turn + " "
            inputs += "We know that: " + knowledge + " "
            inputs += "System replies:"

        # get the output generations from the api, 
        # and write to the output file
zihanl's avatar
zihanl committed
148
        generations = call_model_api(inputs, args.out_seq_length)
zihanl's avatar
zihanl committed
149
150
151
152
153
154
155
        fname_out.write(generations)
        fname_out.write("\n")

    fname.close()
    fname_out.close()


zihanl's avatar
zihanl committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def model_provider(pre_process=True, post_process=True):
    """Build the model."""

    print_rank_0('building GPT model ...')
    model = GPTModel(
        num_tokentypes=0,
        parallel_output=True,
        pre_process=pre_process,
        post_process=post_process
    )
    return model


def generate_samples_by_prompting_input_from_file(model):
zihanl's avatar
zihanl committed
170
171
172
    """Prompt a pretrained language model to generate knowledge/response"""
    
    # get tokenizer
zihanl's avatar
zihanl committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    args = get_args()
    tokenizer = get_tokenizer()

    # Read the sample file and open the output file.
    assert args.sample_input_file is not None, \
        'sample input file is not provided.'
    if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0:
        fname = open(args.sample_input_file, "r")
        all_raw_text = fname.readlines()
        input_count = len(all_raw_text)
        if args.sample_output_file is None:
            sample_output_file = args.sample_input_file + ".out"
            print('`sample-output-file` not specified, setting '
                    'it to {}'.format(sample_output_file))
        else:
            sample_output_file = args.sample_output_file

        fname_out = open(sample_output_file, "w")

zihanl's avatar
zihanl committed
192
193
194
195
    # only two prompt types (i.e., knowledge and response) are allowed
    assert args.prompt_type in ["knowledge", "response"], \
                "Please input a correct prompt type!"

zihanl's avatar
zihanl committed
196
    # Read the prompt file
zihanl's avatar
zihanl committed
197
198
    if args.prompt_type == "knowledge":
        # read the prompts for the knowledge generation
zihanl's avatar
zihanl committed
199
200
201
202
203
204
        prompt_examples_dict = {}
        with open(args.prompt_file, "r") as f:
            for i, line in enumerate(f):
                line = line.strip()
                line_dict = json.loads(line)
                key = list(line_dict.keys())[0]
zihanl's avatar
zihanl committed
205
206

                # get the prompt examples based on the key
zihanl's avatar
zihanl committed
207
208
209
210
211
212
213
214
215
                if key not in prompt_examples_dict:
                    prompt_examples = line_dict[key]
                    prompt = ""
                    for instance in prompt_examples:
                        instance = instance.strip()
                        prompt += instance + " \n"
                    prompt_examples_dict[key] = prompt

    else:
zihanl's avatar
zihanl committed
216
        # read the prompts for the response generation
zihanl's avatar
zihanl committed
217
        # prompts are fixed for all test samples
zihanl's avatar
zihanl committed
218
219
220
221
222
223
224
225
226
        with open(args.prompt_file, "r") as f:
            prompt_examples = f.readlines()
            prompt_examples = prompt_examples[:args.num_prompt_examples]

            prompt = ""
            for instance in prompt_examples:
                instance = instance.strip()
                prompt += instance + " \n"

zihanl's avatar
zihanl committed
227
    input_pos = 0
zihanl's avatar
zihanl committed
228
    model.eval()
zihanl's avatar
zihanl committed
229
    # perform prompting
zihanl's avatar
zihanl committed
230
231
232
233
234
235
236
237
    with torch.no_grad():
        while True:
            raw_text_len = 0
            if mpu.is_pipeline_first_stage() \
               and mpu.get_tensor_model_parallel_rank() == 0:
                input_str = all_raw_text[input_pos]
                input_str = input_str.strip()
                splits = input_str.split("\t")
zihanl's avatar
zihanl committed
238
                topic = splits[0]
zihanl's avatar
zihanl committed
239

zihanl's avatar
zihanl committed
240
241
                if args.prompt_type == "knowledge":
                    # first add the prompt into the raw_text
zihanl's avatar
zihanl committed
242
243
244
245
246
                    turns = splits[1].split(" [SEP] ")
                    last_turn = turns[-1]
                    key = topic + " " + last_turn
                    raw_text = prompt_examples_dict[key]

zihanl's avatar
zihanl committed
247
                    # construct inputs for knowledge generation
zihanl's avatar
zihanl committed
248
                    # then add the constructed inputs into the raw_text
zihanl's avatar
zihanl committed
249
                    raw_text += "( " + last_turn + " ) " + topic + " =>"
zihanl's avatar
zihanl committed
250
251
                
                else:
zihanl's avatar
zihanl committed
252
253
254
                    # first add the prompt into the raw_text
                    raw_text = prompt

zihanl's avatar
zihanl committed
255
                    # construct inputs for response generation
zihanl's avatar
zihanl committed
256
                    # then add the constructed inputs into the raw_text
zihanl's avatar
zihanl committed
257
258
259
                    turns = splits[1].split(" [SEP] ")
                    knowledge = splits[2]
                    last_turn = turns[-1]
root's avatar
root committed
260
261
                    last_turn = " ".join(word_tokenize(last_turn))
                    knowledge = " ".join(word_tokenize(knowledge))
zihanl's avatar
zihanl committed
262
263
264
265
266
267
268
269
270
271
272
                    knowledge = knowledge.strip()
                    last_turn = last_turn.strip()
                    raw_text += "Topic: " + topic + ". "
                    raw_text += "User says: " + last_turn + " "
                    raw_text += "We know that: " + knowledge + " "
                    raw_text += "System replies:"

                input_pos += 1
                raw_text_len = len(raw_text)
            
            else:
zihanl's avatar
zihanl committed
273
                raw_text = "EMPTY TEXT"
zihanl's avatar
zihanl committed
274
275
276
277

            if input_pos % 100 == 0:
                print_rank_0("input_pos: %d" % input_pos)

zihanl's avatar
zihanl committed
278
279
280
281
282
283
284
            outputs = generate_and_post_process(
                        model=model, 
                        prompts=[raw_text], 
                        tokens_to_generate=args.out_seq_length,
                        top_k_sampling=1)
            prompts_plus_generations = outputs[0]
            prompts_plus_generations = prompts_plus_generations[0]
zihanl's avatar
zihanl committed
285

zihanl's avatar
zihanl committed
286
            # write the generated output to the output file
zihanl's avatar
zihanl committed
287
288
            if mpu.get_tensor_model_parallel_rank() == 0:
                if mpu.is_pipeline_first_stage():
zihanl's avatar
zihanl committed
289
290
291
292
293

                    generations = prompts_plus_generations[raw_text_len:]
                    generations = generations.split("\n")[0]
                    generations = generations.strip()
                    fname_out.write(generations)
zihanl's avatar
zihanl committed
294
295
296
297
298
299
300
301
302
303
                    fname_out.write("\n")

            raw_text = None
            if input_pos == input_count:
                return


def main():

    args = get_args()
zihanl's avatar
zihanl committed
304
    if args.api_prompt:
zihanl's avatar
zihanl committed
305
306
307
308
        # obtain the generations by calling the api
        generate_samples_by_calling_api()
        return

zihanl's avatar
zihanl committed
309
310
311
312
313
    if args.num_layers_per_virtual_pipeline_stage is not None:
        print("Interleaved pipeline schedule is not yet supported for text generation.")
        exit()

    # Set up model and load checkpoint.
zihanl's avatar
zihanl committed
314
    model = get_model(model_provider, wrap_with_ddp=False)
zihanl's avatar
zihanl committed
315
316
317
318
319
320
    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    assert len(model) == 1, "Above condition should have caught this"
    model = model[0]

zihanl's avatar
zihanl committed
321
    # perform the prompting
zihanl's avatar
zihanl committed
322
    generate_samples_by_prompting_input_from_file(model)