test_layers.py 19.4 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Neel Kant's avatar
Neel Kant committed
16
17
18
19
20
21
22
23
from mpu import layers
from commons import set_random_seed
from commons import print_separator
from commons import initialize_distributed
import mpu
from torch.nn.parameter import Parameter
import torch.nn.init as init
import torch
24
25
26
27
28
import random
import sys
sys.path.append("../..")


29
def test_parallel_embedding(tensor_model_parallel_size):
30
31
32

    if torch.distributed.get_rank() == 0:
        print('> testing parallel embedding with model parallel size {} ...'.
33
              format(tensor_model_parallel_size))
34

35
36
    mpu.initialize_model_parallel(tensor_model_parallel_size)
    tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size()
37
38
39
40
41
42
43
44
45

    batch_size = 17
    seq_length = 23
    vocab_size = 48
    hidden_size = 16
    seed = 1236

    set_random_seed(123)
    input_data = torch.LongTensor(
Neel Kant's avatar
Neel Kant committed
46
        size=(batch_size, seq_length)).random_(0, vocab_size).cuda()
47
48
49
50
51
52
53
54
55
56
57
    loss_weight = torch.randn([batch_size, seq_length, hidden_size]).cuda()

    set_random_seed(seed)
    embedding_original = torch.nn.Embedding(vocab_size, hidden_size).cuda()

    output = embedding_original(input_data)
    loss_original = torch.mul(output, loss_weight).sum()
    loss_original.backward()

    set_random_seed(seed)
    embedding_parallel = layers.ParallelEmbedding(
Neel Kant's avatar
Neel Kant committed
58
        vocab_size, hidden_size, init_method=init.normal_).cuda()
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    output = embedding_parallel(input_data)
    loss_parallel = torch.mul(output, loss_weight).sum()
    loss_parallel.backward()

    set_random_seed(seed)
    embedding_vocab_parallel = layers.VocabParallelEmbedding(
        vocab_size, hidden_size, init_method=init.normal_).cuda()
    output = embedding_vocab_parallel(input_data)
    loss_vocab_parallel = torch.mul(output, loss_weight).sum()
    loss_vocab_parallel.backward()

    torch.distributed.barrier()
    error = loss_parallel.sub(loss_original).abs()
    print('   error in loss (parallel) on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-12, 'error: {}'.format(error)

    torch.distributed.barrier()
    error = loss_vocab_parallel.sub(loss_original).abs()
    print('   error in loss (vocab parallel) on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-12, 'error: {}'.format(error)

    weight_grad_orig = torch.split(embedding_original.weight.grad,
83
84
                                   hidden_size // tensor_model_parallel_size,
                                   1)[mpu.get_tensor_model_parallel_rank()]
85
86
87
88
89
90
    error = embedding_parallel.weight.grad.sub(weight_grad_orig).abs().max()
    print('   error in grad (parallel) on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-12, 'error: {}'.format(error)

    weight_grad_orig = torch.split(embedding_original.weight.grad,
91
92
                                   vocab_size // tensor_model_parallel_size,
                                   0)[mpu.get_tensor_model_parallel_rank()]
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    error = embedding_vocab_parallel.weight.grad.sub(
        weight_grad_orig).abs().max()
    print('   error in grad (vocab parallel) on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-12, 'error: {}'.format(error)

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print('>> passed the test :-)')


107
def test_initialize_affine_weight(tensor_model_parallel_size):
108

109
    mpu.initialize_model_parallel(tensor_model_parallel_size)
110
111
    if torch.distributed.get_rank() == 0:
        print('> testing initialize_affine_weight with model parallel '
112
113
              'size: {}'.format(tensor_model_parallel_size))
    tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size()
114
115
116

    seed = 12345
    input_size_coeff = 13
117
    input_size = input_size_coeff * tensor_model_parallel_size
118
    output_size_coeff = 17
119
    output_size = output_size_coeff * tensor_model_parallel_size
120
121
122
123
124
125
126
127
128
129
130
131
132
133

    # ---------------
    # Column parallel
    # ---------------
    weight = torch.empty(output_size_coeff, input_size)
    set_random_seed(seed)
    layers._initialize_affine_weight(weight, output_size, input_size,

                                     output_size_coeff, 0,
                                     torch.nn.init.normal_)
    # Target.
    set_random_seed(seed)
    master_weight = torch.empty(output_size, input_size)
    torch.nn.init.normal_(master_weight)
134
    rank = mpu.get_tensor_model_parallel_rank()
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    my_weight = torch.split(master_weight, output_size_coeff,
                            dim=0)[rank].contiguous().clone()

    # Compare.
    error = weight.sub(my_weight).abs().max()
    torch.distributed.barrier()
    print('   column parallel max error (should be zero) on global rank '
          '{}: {}'.format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    # ------------
    # Row parallel
    # ------------
    weight = torch.empty(output_size, input_size_coeff)
    set_random_seed(seed)
    mpu.layers._initialize_affine_weight(weight, output_size, input_size,
                                         input_size_coeff, 1,
                                         torch.nn.init.normal_)
    # Target.
    set_random_seed(seed)
    master_weight = torch.empty(output_size, input_size)
    torch.nn.init.normal_(master_weight)
157
    rank = mpu.get_tensor_model_parallel_rank()
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    my_weight = torch.split(master_weight, input_size_coeff,
                            dim=1)[rank].contiguous().clone()

    # Compare.
    error = weight.sub(my_weight).abs().max()
    torch.distributed.barrier()
    print('   row parallel max error (should be zero) on global rank '
          '{}: {}'.format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(' >> passed the test :-)')


class IdentityLayer2D(torch.nn.Module):
Neel Kant's avatar
Neel Kant committed
177
    def __init__(self, m, n):
178
179
180
        super(IdentityLayer2D, self).__init__()
        self.weight = Parameter(torch.Tensor(m, n))
        torch.nn.init.xavier_normal_(self.weight)
Neel Kant's avatar
Neel Kant committed
181

182
183
184
185
    def forward(self):
        return self.weight


186
def test_column_parallel_linear(tensor_model_parallel_size):
187

188
    mpu.initialize_model_parallel(tensor_model_parallel_size)
189
190
    if torch.distributed.get_rank() == 0:
        print('> testing ColumnParallelLinear with model parallel '
191
192
              'size: {}'.format(tensor_model_parallel_size))
    tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size()
193
194
195
196

    seed = 12345
    set_random_seed(seed)
    input_size_coeff = 13
197
    input_size = input_size_coeff * tensor_model_parallel_size
198
    output_size_coeff = 17
199
    output_size = output_size_coeff * tensor_model_parallel_size
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    batch_size = 7

    # Network
    identity_layer = IdentityLayer2D(batch_size, input_size).cuda()
    linear_layer = mpu.ColumnParallelLinear(
        input_size, output_size, keep_master_weight_for_test=True).cuda()
    loss_weight = torch.randn([batch_size, output_size]).cuda()
    # Forward
    input_ = identity_layer()
    output = linear_layer(input_)
    loss = torch.mul(output, loss_weight).sum()
    # Backward
    loss.backward()

    # Values.
    dLdY = loss_weight
    X = identity_layer.weight
    A = linear_layer.master_weight.cuda()
    dLdA = torch.matmul(dLdY.t(), X)
    dLdb = torch.matmul(torch.ones(batch_size, 1).cuda().t(), dLdY).view(-1)
    dLdX = torch.matmul(dLdY, A)

222
    rank = mpu.get_tensor_model_parallel_rank()
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    my_dLdA = torch.split(dLdA, output_size_coeff,
                          dim=0)[rank].contiguous().clone()
    error = my_dLdA.sub(linear_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print('   error in dLdA on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    my_dLdb = torch.split(dLdb, output_size_coeff,
                          dim=0)[rank].contiguous().clone()
    error = my_dLdb.sub(linear_layer.bias.grad).abs().max()
    torch.distributed.barrier()
    print('   error in dLdb on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    error = dLdX.sub(identity_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print('   error in dLdX on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(' >> passed the test :-)')


253
def test_row_parallel_linear(tensor_model_parallel_size):
254

255
    mpu.initialize_model_parallel(tensor_model_parallel_size)
256
257
    if torch.distributed.get_rank() == 0:
        print('> testing RowParallelLinear with model parallel '
258
259
              'size: {}'.format(tensor_model_parallel_size))
    tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size()
260
261
262
263

    seed = 12345
    set_random_seed(seed)
    input_size_coeff = 13
264
    input_size = input_size_coeff * tensor_model_parallel_size
265
    output_size_coeff = 17
266
    output_size = output_size_coeff * tensor_model_parallel_size
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    batch_size = 7

    # Network
    identity_layer = IdentityLayer2D(batch_size, input_size).cuda()
    linear_layer = mpu.RowParallelLinear(
        input_size, output_size, keep_master_weight_for_test=True).cuda()
    loss_weight = torch.randn([batch_size, output_size]).cuda()
    # Forward
    input_ = identity_layer()
    output = linear_layer(input_)
    loss = torch.mul(output, loss_weight).sum()
    # Backward
    loss.backward()

    # Values.
    dLdY = loss_weight
    X = identity_layer.weight
    A = linear_layer.master_weight.cuda()
    dLdA = torch.matmul(dLdY.t(), X)
    dLdb = torch.matmul(torch.ones(batch_size, 1).cuda().t(), dLdY).view(-1)
    dLdX = torch.matmul(dLdY, A)

289
    rank = mpu.get_tensor_model_parallel_rank()
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    my_dLdA = torch.split(dLdA, input_size_coeff,
                          dim=1)[rank].contiguous().clone()
    error = my_dLdA.sub(linear_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print('   error in dLdA on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    error = dLdb.sub(linear_layer.bias.grad).abs().max()
    torch.distributed.barrier()
    print('   error in dLdb on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    error = dLdX.sub(identity_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print('   error in dLdX on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(' >> passed the test :-)')


class IdentityLayer3D(torch.nn.Module):
Neel Kant's avatar
Neel Kant committed
319
    def __init__(self, m, n, k):
320
321
322
        super(IdentityLayer3D, self).__init__()
        self.weight = Parameter(torch.Tensor(m, n, k))
        torch.nn.init.xavier_normal_(self.weight)
Neel Kant's avatar
Neel Kant committed
323

324
325
326
327
    def forward(self):
        return self.weight


328
def parallel_self_attention(tensor_model_parallel_size, num_att_heads_per_partition,
329
330
                            hidden_size_per_att_head, dropout_prob, batch_size,
                            sequence_length):
331
332
    mpu.initialize_model_parallel(tensor_model_parallel_size)
    tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size()
333
334
335
336
337

    seed = 12345
    set_random_seed(seed)

    num_att_heads = num_att_heads_per_partition * \
Neel Kant's avatar
Neel Kant committed
338
        torch.distributed.get_world_size()
339
340
341
342
343
344
    hidden_size = hidden_size_per_att_head * num_att_heads

    # Network
    identity_layer = IdentityLayer3D(batch_size, sequence_length,
                                     hidden_size).cuda()
    attention_layer = mpu.BertParallelSelfAttention(hidden_size, num_att_heads,
Neel Kant's avatar
Neel Kant committed
345
                                                    dropout_prob).cuda()
346
347
348
349
350
351
352
353
354
    loss_weight = torch.randn([batch_size, sequence_length, hidden_size]).cuda()
    attention_mask = torch.randn([batch_size, 1, 1, sequence_length]).cuda()
    # Forward
    input_ = identity_layer()
    output = attention_layer(input_, attention_mask)
    loss = torch.mul(output, loss_weight).sum()
    # Backward
    loss.backward()

355
    rank = mpu.get_tensor_model_parallel_rank()
356
    mpu.destroy_model_parallel()
357
    return rank, hidden_size, tensor_model_parallel_size, loss, \
358
359
360
        attention_layer, identity_layer


361
def test_parallel_self_attention(tensor_model_parallel_size):
362
363
364

    if torch.distributed.get_rank() == 0:
        print('> testing ParallelSelfAttention with model parallel '
365
              'size: {}'.format(tensor_model_parallel_size))
366
367
368

    num_att_heads_per_partition = 3
    hidden_size_per_att_head = 7
Neel Kant's avatar
Neel Kant committed
369
    dropout_prob = 0.0  # has to be zero
370
371
372
    batch_size = 5
    sequence_length = 13

373
    rank_1, hideen_size_1, tensor_model_parallel_size_1, loss_1, \
Neel Kant's avatar
Neel Kant committed
374
        attention_layer_1, identity_layer_1 = parallel_self_attention(
375
376
377
            1, num_att_heads_per_partition,
            hidden_size_per_att_head, dropout_prob, batch_size, sequence_length)

378
    rank, hidden_size, tensor_model_parallel_size, loss, \
Neel Kant's avatar
Neel Kant committed
379
        attention_layer, identity_layer = parallel_self_attention(
380
            tensor_model_parallel_size, num_att_heads_per_partition,
381
382
383
384
385
386
387
388
389
390
391
            hidden_size_per_att_head, dropout_prob, batch_size, sequence_length)
    assert hideen_size_1 == hidden_size

    error = loss_1.sub(loss).abs().max()
    torch.distributed.barrier()
    print('   loss error on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 5.0e-6

    my_lin_grad_list = torch.split(
        attention_layer_1.query_key_value.weight.grad,
392
        hidden_size // tensor_model_parallel_size, 0)[rank::tensor_model_parallel_size]
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    my_lin_grad = torch.cat(my_lin_grad_list, dim=0)
    error = my_lin_grad.sub(
        attention_layer.query_key_value.weight.grad).abs().max()
    torch.distributed.barrier()
    print('   weight gradient error on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 5.0e-6

    error = identity_layer_1.weight.grad.sub(
        identity_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print('   input gradient error on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 5.0e-6

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(' >> passed the test :-)')

Neel Kant's avatar
Neel Kant committed
412

413
def parallel_transformer(tensor_model_parallel_size, num_att_heads_per_partition,
414
415
                         hidden_size_per_att_head, batch_size, sequence_length):

416
417
    mpu.initialize_model_parallel(tensor_model_parallel_size)
    tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size()
418
419
420
421
422

    seed = 12345
    set_random_seed(seed)

    num_att_heads = num_att_heads_per_partition * \
Neel Kant's avatar
Neel Kant committed
423
        torch.distributed.get_world_size()
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    hidden_size = hidden_size_per_att_head * num_att_heads
    intermediate_size = 4 * hidden_size

    # Network
    identity_layer = IdentityLayer3D(batch_size, sequence_length,
                                     hidden_size).cuda()
    transformer_layer = mpu.BertParallelTransformerLayer(
        hidden_size, intermediate_size, num_att_heads, 0.0, 0.0,
        torch.nn.functional.relu, 1.0e-5).cuda()

    loss_weight = torch.randn([batch_size, sequence_length, hidden_size]).cuda()
    attention_mask = torch.randn([batch_size, 1, 1, sequence_length]).cuda()
    # Forward
    input_ = identity_layer()
    output = transformer_layer(input_, attention_mask)
    loss = torch.mul(output, loss_weight).sum()
    # Backward
    loss.backward()

443
    rank = mpu.get_tensor_model_parallel_rank()
444
    mpu.destroy_model_parallel()
445
    return rank, hidden_size, tensor_model_parallel_size, loss, \
446
447
448
        transformer_layer, identity_layer


449
def test_parallel_transformer_layer(tensor_model_parallel_size):
450
451
452

    if torch.distributed.get_rank() == 0:
        print('> testing ParallelTransformerLayer with model parallel '
453
              'size: {}'.format(tensor_model_parallel_size))
454
455
456
457
458
459

    num_att_heads_per_partition = 3
    hidden_size_per_att_head = 7
    batch_size = 5
    sequence_length = 13

460
    rank_1, hidden_size_1, tensor_model_parallel_size_1, loss_1, \
461
462
463
464
        transformer_layer_1, identity_layer_1 = parallel_transformer(
            1, num_att_heads_per_partition,
            hidden_size_per_att_head, batch_size, sequence_length)

465
    rank, hidden_size, tensor_model_parallel_size, loss, \
466
        transformer_layer, identity_layer = parallel_transformer(
467
            tensor_model_parallel_size, num_att_heads_per_partition,
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
            hidden_size_per_att_head, batch_size, sequence_length)

    error = loss_1.sub(loss).abs().max()
    torch.distributed.barrier()
    print('   loss error on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 5.0e-5, 'error: {}'.format(error)

    error = identity_layer_1.weight.grad.sub(
        identity_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print('   input gradient error on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 5.0e-5, 'error: {}'.format(error)

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(' >> passed the test :-)')


if __name__ == '__main__':

    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    initialize_distributed()
    world_size = torch.distributed.get_world_size()

    print_separator('test initialize affine weight')
497
498
499
500
    tensor_model_parallel_size = 1
    while tensor_model_parallel_size <= world_size:
        test_initialize_affine_weight(tensor_model_parallel_size)
        tensor_model_parallel_size *= 2
501

502
503
    tensor_model_parallel_size = 1
    while tensor_model_parallel_size <= world_size:
504
        print_separator('test parallel embedding')
505
506
        test_parallel_embedding(tensor_model_parallel_size)
        tensor_model_parallel_size *= 2
507
508

    print_separator('test column-parallel linear')
509
510
511
512
    tensor_model_parallel_size = 1
    while tensor_model_parallel_size <= world_size:
        test_column_parallel_linear(tensor_model_parallel_size)
        tensor_model_parallel_size *= 2
513
514

    print_separator('test row-parallel linear')
515
516
517
518
    tensor_model_parallel_size = 1
    while tensor_model_parallel_size <= world_size:
        test_row_parallel_linear(tensor_model_parallel_size)
        tensor_model_parallel_size *= 2
519
520

    print_separator('test parallel self-attention')
521
522
523
524
    tensor_model_parallel_size = 1
    while tensor_model_parallel_size <= world_size:
        test_parallel_self_attention(tensor_model_parallel_size)
        tensor_model_parallel_size *= 2
525
526

    print_separator('test parallel transformer')
527
528
529
530
    tensor_model_parallel_size = 1
    while tensor_model_parallel_size <= world_size:
        test_parallel_transformer_layer(tensor_model_parallel_size)
        tensor_model_parallel_size *= 2