dataset_utils.py 27.2 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, and NVIDIA.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16


17
18
19
20
# Most of the code here has been copied from:
#   https://github.com/google-research/albert/blob/master/create_pretraining_data.py
# with some modifications.

mohammad's avatar
mohammad committed
21
import math
22
import os
23
import time
24
import collections
Neel Kant's avatar
Neel Kant committed
25

26
import numpy as np
27
28
29
30
31
32
33
import torch

from megatron import (
    get_args,
    mpu,
    print_rank_0
)
mohammad's avatar
mohammad committed
34
from megatron.data.blendable_dataset import BlendableDataset
35
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
36

37
DSET_TYPE_BERT = 'standard_bert'
38
DSET_TYPE_ICT = 'ict'
39
DSET_TYPE_T5  = 't5'
40

41
DSET_TYPES = [DSET_TYPE_BERT, DSET_TYPE_ICT, DSET_TYPE_T5]
42

43

mohammad's avatar
mohammad committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def get_datasets_weights_and_num_samples(data_prefix,
                                         train_valid_test_num_samples):

    # The data prefix should be in the format of:
    #   weight-1, data-prefix-1, weight-2, data-prefix-2, ..
    assert len(data_prefix) % 2 == 0
    num_datasets = len(data_prefix) // 2
    weights = [0]*num_datasets
    prefixes = [0]*num_datasets
    for i in range(num_datasets):
        weights[i] = float(data_prefix[2*i])
        prefixes[i] = (data_prefix[2*i+1]).strip()
    # Normalize weights
    weight_sum = 0.0
    for weight in weights:
        weight_sum += weight
    assert weight_sum > 0.0
    weights = [weight / weight_sum for weight in weights]

    # Add 0.5% (the 1.005 factor) so in case the bleding dataset does
    # not uniformly distribute the number of samples, we still have
    # samples left to feed to the network.
    datasets_train_valid_test_num_samples = []
    for weight in weights:
        datasets_train_valid_test_num_samples.append(
            [int(math.ceil(val * weight * 1.005))
             for val in train_valid_test_num_samples])


    return prefixes, weights, datasets_train_valid_test_num_samples


76
77
78
79
80
81
def compile_helper():
    """Compile helper function ar runtime. Make sure this
    is invoked on a single process."""
    import os
    import subprocess
    path = os.path.abspath(os.path.dirname(__file__))
82
83
84
85
86
    ret = subprocess.run(['make', '-C', path])
    if ret.returncode != 0:
        print("Making C++ dataset helpers module failed, exiting.")
        import sys
        sys.exit(1)
87
88


89
def get_a_and_b_segments(sample, np_rng):
90
91
92
93
94
95
96
97
98
99
100
    """Divide sample into a and b segments."""

    # Number of sentences in the sample.
    n_sentences = len(sample)
    # Make sure we always have two sentences.
    assert n_sentences > 1, 'make sure each sample has at least two sentences.'

    # First part:
    # `a_end` is how many sentences go into the `A`.
    a_end = 1
    if n_sentences >= 3:
101
102
        # Note that randin in numpy is exclusive.
        a_end = np_rng.randint(1, n_sentences)
103
104
105
106
107
108
109
110
111
112
113
    tokens_a = []
    for j in range(a_end):
        tokens_a.extend(sample[j])

    # Second part:
    tokens_b = []
    for j in range(a_end, n_sentences):
        tokens_b.extend(sample[j])

    # Random next:
    is_next_random = False
114
    if np_rng.random() < 0.5:
115
116
117
118
119
120
        is_next_random = True
        tokens_a, tokens_b = tokens_b, tokens_a

    return tokens_a, tokens_b, is_next_random


121
def truncate_segments(tokens_a, tokens_b, len_a, len_b, max_num_tokens, np_rng):
122
    """Truncates a pair of sequences to a maximum sequence length."""
123
    #print(len_a, len_b, max_num_tokens)
124
    assert len_a > 0
125
126
127
    if len_a + len_b <= max_num_tokens:
        return False
    while len_a + len_b > max_num_tokens:
128
129
130
131
132
133
        if len_a > len_b:
            len_a -= 1
            tokens = tokens_a
        else:
            len_b -= 1
            tokens = tokens_b
134
        if np_rng.random() < 0.5:
135
136
137
            del tokens[0]
        else:
            tokens.pop()
138
    return True
139

Neel Kant's avatar
Neel Kant committed
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
def create_tokens_and_tokentypes(tokens_a, tokens_b, cls_id, sep_id):
    """Merge segments A and B, add [CLS] and [SEP] and build tokentypes."""

    tokens = []
    tokentypes = []
    # [CLS].
    tokens.append(cls_id)
    tokentypes.append(0)
    # Segment A.
    for token in tokens_a:
        tokens.append(token)
        tokentypes.append(0)
    # [SEP].
    tokens.append(sep_id)
    tokentypes.append(0)
    # Segment B.
    for token in tokens_b:
        tokens.append(token)
        tokentypes.append(1)
160
161
162
163
    if tokens_b:
        # [SEP].
        tokens.append(sep_id)
        tokentypes.append(1)
164

165
166
167
168
169
170
171
172
    return tokens, tokentypes


MaskedLmInstance = collections.namedtuple("MaskedLmInstance",
                                          ["index", "label"])


def is_start_piece(piece):
173
174
175
176
177
178
    """Check if the current word piece is the starting piece (BERT)."""
    # When a word has been split into
    # WordPieces, the first token does not have any marker and any subsequence
    # tokens are prefixed with ##. So whenever we see the ## token, we
    # append it to the previous set of word indexes.
    return not piece.startswith("##")
179
180
181
182
183
184
185


def create_masked_lm_predictions(tokens,
                                 vocab_id_list, vocab_id_to_token_dict,
                                 masked_lm_prob,
                                 cls_id, sep_id, mask_id,
                                 max_predictions_per_seq,
186
                                 np_rng,
187
188
189
                                 max_ngrams=3,
                                 do_whole_word_mask=True,
                                 favor_longer_ngram=False,
190
191
192
                                 do_permutation=False,
                                 geometric_dist=False,
                                 masking_style="bert"):
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    """Creates the predictions for the masked LM objective.
    Note: Tokens here are vocab ids and not text tokens."""

    cand_indexes = []
    # Note(mingdachen): We create a list for recording if the piece is
    # the starting piece of current token, where 1 means true, so that
    # on-the-fly whole word masking is possible.
    token_boundary = [0] * len(tokens)

    for (i, token) in enumerate(tokens):
        if token == cls_id or token == sep_id:
            token_boundary[i] = 1
            continue
        # Whole Word Masking means that if we mask all of the wordpieces
        # corresponding to an original word.
        #
        # Note that Whole Word Masking does *not* change the training code
        # at all -- we still predict each WordPiece independently, softmaxed
        # over the entire vocabulary.
        if (do_whole_word_mask and len(cand_indexes) >= 1 and
                not is_start_piece(vocab_id_to_token_dict[token])):
            cand_indexes[-1].append(i)
215
        else:
216
217
218
            cand_indexes.append([i])
            if is_start_piece(vocab_id_to_token_dict[token]):
                token_boundary[i] = 1
219

220
    output_tokens = list(tokens)
221

222
223
    masked_lm_positions = []
    masked_lm_labels = []
224

225
226
227
    if masked_lm_prob == 0:
        return (output_tokens, masked_lm_positions,
                masked_lm_labels, token_boundary)
228

229
230
231
232
    num_to_predict = min(max_predictions_per_seq,
                         max(1, int(round(len(tokens) * masked_lm_prob))))

    ngrams = np.arange(1, max_ngrams + 1, dtype=np.int64)
233
234
235
236
237
238
239
    if not geometric_dist:
        # Note(mingdachen):
        # By default, we set the probilities to favor shorter ngram sequences.
        pvals = 1. / np.arange(1, max_ngrams + 1)
        pvals /= pvals.sum(keepdims=True)
        if favor_longer_ngram:
            pvals = pvals[::-1]
240

241
242
243
244
245
246
    ngram_indexes = []
    for idx in range(len(cand_indexes)):
        ngram_index = []
        for n in ngrams:
            ngram_index.append(cand_indexes[idx:idx + n])
        ngram_indexes.append(ngram_index)
247

248
    np_rng.shuffle(ngram_indexes)
249

250
    (masked_lms, masked_spans) = ([], [])
251
252
253
254
255
256
257
258
259
260
261
262
263
    covered_indexes = set()
    for cand_index_set in ngram_indexes:
        if len(masked_lms) >= num_to_predict:
            break
        if not cand_index_set:
            continue
        # Note(mingdachen):
        # Skip current piece if they are covered in lm masking or previous ngrams.
        for index_set in cand_index_set[0]:
            for index in index_set:
                if index in covered_indexes:
                    continue

264
265
266
267
268
269
270
271
272
273
        if not geometric_dist:
            n = np_rng.choice(ngrams[:len(cand_index_set)],
                              p=pvals[:len(cand_index_set)] /
                              pvals[:len(cand_index_set)].sum(keepdims=True))
        else:
            # Sampling "n" from the geometric distribution and clipping it to
            # the max_ngrams. Using p=0.2 default from the SpanBERT paper
            # https://arxiv.org/pdf/1907.10529.pdf (Sec 3.1)
            n = min(np_rng.geometric(0.2), max_ngrams)

274
275
        index_set = sum(cand_index_set[n - 1], [])
        n -= 1
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        # Note(mingdachen):
        # Repeatedly looking for a candidate that does not exceed the
        # maximum number of predictions by trying shorter ngrams.
        while len(masked_lms) + len(index_set) > num_to_predict:
            if n == 0:
                break
            index_set = sum(cand_index_set[n - 1], [])
            n -= 1
        # If adding a whole-word mask would exceed the maximum number of
        # predictions, then just skip this candidate.
        if len(masked_lms) + len(index_set) > num_to_predict:
            continue
        is_any_index_covered = False
        for index in index_set:
            if index in covered_indexes:
                is_any_index_covered = True
                break
        if is_any_index_covered:
            continue
        for index in index_set:
            covered_indexes.add(index)
            masked_token = None
298
299
300
301
302
303
304
305
306
307
308
309
            if masking_style == "bert":
                # 80% of the time, replace with [MASK]
                if np_rng.random() < 0.8:
                    masked_token = mask_id
                else:
                    # 10% of the time, keep original
                    if np_rng.random() < 0.5:
                        masked_token = tokens[index]
                    # 10% of the time, replace with random word
                    else:
                        masked_token = vocab_id_list[np_rng.randint(0, len(vocab_id_list))]
            elif masking_style == "t5":
310
311
                masked_token = mask_id
            else:
312
                raise ValueError("invalid value of masking style")
313
314
315
316

            output_tokens[index] = masked_token
            masked_lms.append(MaskedLmInstance(index=index, label=tokens[index]))

317
318
319
320
321
        masked_spans.append(MaskedLmInstance(
            index=index_set,
            label=[tokens[index] for index in index_set]))

    assert len(masked_lms) <= num_to_predict
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    np_rng.shuffle(ngram_indexes)

    select_indexes = set()
    if do_permutation:
        for cand_index_set in ngram_indexes:
            if len(select_indexes) >= num_to_predict:
                break
            if not cand_index_set:
                continue
            # Note(mingdachen):
            # Skip current piece if they are covered in lm masking or previous ngrams.
            for index_set in cand_index_set[0]:
                for index in index_set:
                    if index in covered_indexes or index in select_indexes:
                        continue

            n = np.random.choice(ngrams[:len(cand_index_set)],
                                 p=pvals[:len(cand_index_set)] /
                                 pvals[:len(cand_index_set)].sum(keepdims=True))
            index_set = sum(cand_index_set[n - 1], [])
            n -= 1

            while len(select_indexes) + len(index_set) > num_to_predict:
                if n == 0:
                    break
                index_set = sum(cand_index_set[n - 1], [])
                n -= 1
            # If adding a whole-word mask would exceed the maximum number of
            # predictions, then just skip this candidate.
            if len(select_indexes) + len(index_set) > num_to_predict:
                continue
            is_any_index_covered = False
            for index in index_set:
                if index in covered_indexes or index in select_indexes:
                    is_any_index_covered = True
                    break
            if is_any_index_covered:
                continue
            for index in index_set:
                select_indexes.add(index)
        assert len(select_indexes) <= num_to_predict

        select_indexes = sorted(select_indexes)
        permute_indexes = list(select_indexes)
        np_rng.shuffle(permute_indexes)
        orig_token = list(output_tokens)

        for src_i, tgt_i in zip(select_indexes, permute_indexes):
            output_tokens[src_i] = orig_token[tgt_i]
            masked_lms.append(MaskedLmInstance(index=src_i, label=orig_token[src_i]))

    masked_lms = sorted(masked_lms, key=lambda x: x.index)
374
375
    # Sort the spans by the index of the first span
    masked_spans = sorted(masked_spans, key=lambda x: x.index[0])
376
377
378
379

    for p in masked_lms:
        masked_lm_positions.append(p.index)
        masked_lm_labels.append(p.label)
380
    return (output_tokens, masked_lm_positions, masked_lm_labels, token_boundary, masked_spans)
381
382
383
384
385
386
387
388
389
390
391


def pad_and_convert_to_numpy(tokens, tokentypes, masked_positions,
                             masked_labels, pad_id, max_seq_length):
    """Pad sequences and convert them to numpy."""

    # Some checks.
    num_tokens = len(tokens)
    padding_length = max_seq_length - num_tokens
    assert padding_length >= 0
    assert len(tokentypes) == num_tokens
392
    assert len(masked_positions) == len(masked_labels)
393
394

    # Tokens and token types.
395
    filler = [pad_id] * padding_length
396
397
398
399
    tokens_np = np.array(tokens + filler, dtype=np.int64)
    tokentypes_np = np.array(tokentypes + filler, dtype=np.int64)

    # Padding mask.
400
    padding_mask_np = np.array([1] * num_tokens + [0] * padding_length,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
401
                               dtype=np.int64)
402
403
404
405
406
407
408
409
410
411
412

    # Lables and loss mask.
    labels = [-1] * max_seq_length
    loss_mask = [0] * max_seq_length
    for i in range(len(masked_positions)):
        assert masked_positions[i] < num_tokens
        labels[masked_positions[i]] = masked_labels[i]
        loss_mask[masked_positions[i]] = 1
    labels_np = np.array(labels, dtype=np.int64)
    loss_mask_np = np.array(loss_mask, dtype=np.int64)

413
    return tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np
414
415
416
417


def build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                    train_valid_test_num_samples,
418
419
420
421
                                    max_seq_length,
                                    masked_lm_prob, short_seq_prob, seed,
                                    skip_warmup, binary_head=False,
                                    max_seq_length_dec=None,
422
423
                                    dataset_type='standard_bert'):

mohammad's avatar
mohammad committed
424
425
426
427
428
429
430
    if len(data_prefix) == 1:
        return _build_train_valid_test_datasets(data_prefix[0],
                                                data_impl, splits_string,
                                                train_valid_test_num_samples,
                                                max_seq_length, masked_lm_prob,
                                                short_seq_prob, seed,
                                                skip_warmup,
431
                                                binary_head,
432
                                                max_seq_length_dec,
mohammad's avatar
mohammad committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
                                                dataset_type=dataset_type)
    # Blending dataset.
    # Parse the values.
    output = get_datasets_weights_and_num_samples(data_prefix,
                                                  train_valid_test_num_samples)
    prefixes, weights, datasets_train_valid_test_num_samples = output

    # Build individual datasets.
    train_datasets = []
    valid_datasets = []
    test_datasets = []
    for i in range(len(prefixes)):
        train_ds, valid_ds, test_ds = _build_train_valid_test_datasets(
            prefixes[i], data_impl, splits_string,
            datasets_train_valid_test_num_samples[i],
            max_seq_length, masked_lm_prob, short_seq_prob,
449
            seed, skip_warmup, binary_head, dataset_type=dataset_type)
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
        if train_ds:
            train_datasets.append(train_ds)
        if valid_ds:
            valid_datasets.append(valid_ds)
        if test_ds:
            test_datasets.append(test_ds)

        # Blend.
    blending_train_dataset = None
    if train_datasets:
        blending_train_dataset = BlendableDataset(train_datasets, weights)
    blending_valid_dataset = None
    if valid_datasets:
        blending_valid_dataset = BlendableDataset(valid_datasets, weights)
    blending_test_dataset = None
    if test_datasets:
        blending_test_dataset = BlendableDataset(test_datasets, weights)
mohammad's avatar
mohammad committed
467
468
469
470
471
472
473

    return (blending_train_dataset, blending_valid_dataset,
            blending_test_dataset)


def _build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                     train_valid_test_num_samples,
474
475
476
477
                                     max_seq_length,
                                     masked_lm_prob, short_seq_prob, seed,
                                     skip_warmup, binary_head,
                                     max_seq_length_dec,
mohammad's avatar
mohammad committed
478
                                     dataset_type='standard_bert'):
479

480
    if dataset_type not in DSET_TYPES:
481
482
483
484
485
486
487
        raise ValueError("Invalid dataset_type: ", dataset_type)

    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
                                           skip_warmup)

488
    if dataset_type == DSET_TYPE_ICT:
Neel Kant's avatar
Neel Kant committed
489
490
        args = get_args()
        title_dataset = get_indexed_dataset_(args.titles_data_path,
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
                                             data_impl,
                                             skip_warmup)

    # Get start and end indices of train/valid/train into doc-idx
    # Note that doc-idx is desinged to be num-docs + 1 so we can
    # easily iterate over it.
    total_num_of_documents = indexed_dataset.doc_idx.shape[0] - 1
    splits = get_train_valid_test_split_(splits_string, total_num_of_documents)

    # Print stats about the splits.
    print_rank_0(' > dataset split:')

    def print_split_stats(name, index):
        print_rank_0('    {}:'.format(name))
        print_rank_0('     document indices in [{}, {}) total of {} '
                     'documents'.format(splits[index], splits[index + 1],
                                        splits[index + 1] - splits[index]))
        start_index = indexed_dataset.doc_idx[splits[index]]
        end_index = indexed_dataset.doc_idx[splits[index + 1]]
        print_rank_0('     sentence indices in [{}, {}) total of {} '
                     'sentences'.format(start_index, end_index,
                                        end_index - start_index))
    print_split_stats('train', 0)
    print_split_stats('validation', 1)
    print_split_stats('test', 2)

    def build_dataset(index, name):
Neel Kant's avatar
Neel Kant committed
518
        from megatron.data.bert_dataset import BertDataset
Neel Kant's avatar
Neel Kant committed
519
        from megatron.data.ict_dataset import ICTDataset
520
        from megatron.data.t5_dataset import T5Dataset
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
        dataset = None
        if splits[index + 1] > splits[index]:
            # Get the pointer to the original doc-idx so we can set it later.
            doc_idx_ptr = indexed_dataset.get_doc_idx()
            # Slice the doc-idx
            start_index = splits[index]
            # Add +1 so we can index into the dataset to get the upper bound.
            end_index = splits[index + 1] + 1
            # New doc_idx view.
            indexed_dataset.set_doc_idx(doc_idx_ptr[start_index:end_index])
            # Build the dataset accordingly.
            kwargs = dict(
                name=name,
                data_prefix=data_prefix,
                num_epochs=None,
                max_num_samples=train_valid_test_num_samples[index],
                max_seq_length=max_seq_length,
538
                seed=seed,
539
540
            )

541
            if dataset_type == DSET_TYPE_ICT:
Neel Kant's avatar
Neel Kant committed
542
                args = get_args()
543
                dataset = ICTDataset(
544
545
                    block_dataset=indexed_dataset,
                    title_dataset=title_dataset,
Neel Kant's avatar
Neel Kant committed
546
                    query_in_block_prob=args.query_in_block_prob,
Neel Kant's avatar
Neel Kant committed
547
                    use_one_sent_docs=args.use_one_sent_docs,
548
                    binary_head=binary_head,
549
550
                    **kwargs
                )
551
552
553
554
555
556
557
558
559
            elif dataset_type == DSET_TYPE_T5:
                dataset = T5Dataset(
                    indexed_dataset=indexed_dataset,
                    masked_lm_prob=masked_lm_prob,
                    max_seq_length_dec=max_seq_length_dec,
                    short_seq_prob=short_seq_prob,
                    **kwargs
                )
            elif dataset_type == DSET_TYPE_BERT:
560
                dataset = BertDataset(
561
562
                    indexed_dataset=indexed_dataset,
                    masked_lm_prob=masked_lm_prob,
Neel Kant's avatar
Neel Kant committed
563
                    short_seq_prob=short_seq_prob,
564
                    binary_head=binary_head,
565
566
                    **kwargs
                )
567
568
            else:
                raise NotImplementedError("Dataset type not fully implemented.")
569
570
571
572
573
574
575
576
577
578
579
580
581

            # Set the original pointer so dataset remains the main dataset.
            indexed_dataset.set_doc_idx(doc_idx_ptr)
            # Checks.
            assert indexed_dataset.doc_idx[0] == 0
            assert indexed_dataset.doc_idx.shape[0] == \
                (total_num_of_documents + 1)
        return dataset

    train_dataset = build_dataset(0, 'train')
    valid_dataset = build_dataset(1, 'valid')
    test_dataset = build_dataset(2, 'test')

582
    return (train_dataset, valid_dataset, test_dataset)
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632


def get_indexed_dataset_(data_prefix, data_impl, skip_warmup):

    print_rank_0(' > building dataset index ...')

    start_time = time.time()
    indexed_dataset = make_indexed_dataset(data_prefix,
                                           data_impl,
                                           skip_warmup)
    assert indexed_dataset.sizes.shape[0] == indexed_dataset.doc_idx[-1]
    print_rank_0(' > finished creating indexed dataset in {:4f} '
                 'seconds'.format(time.time() - start_time))

    print_rank_0(' > indexed dataset stats:')
    print_rank_0('    number of documents: {}'.format(
        indexed_dataset.doc_idx.shape[0] - 1))
    print_rank_0('    number of sentences: {}'.format(
        indexed_dataset.sizes.shape[0]))

    return indexed_dataset


def get_train_valid_test_split_(splits_string, size):
    """ Get dataset splits from comma or '/' separated string list."""

    splits = []
    if splits_string.find(',') != -1:
        splits = [float(s) for s in splits_string.split(',')]
    elif splits_string.find('/') != -1:
        splits = [float(s) for s in splits_string.split('/')]
    else:
        splits = [float(splits_string)]
    while len(splits) < 3:
        splits.append(0.)
    splits = splits[:3]
    splits_sum = sum(splits)
    assert splits_sum > 0.0
    splits = [split / splits_sum for split in splits]
    splits_index = [0]
    for index, split in enumerate(splits):
        splits_index.append(splits_index[index] +
                            int(round(split * float(size))))
    diff = splits_index[-1] - size
    for index in range(1, len(splits_index)):
        splits_index[index] -= diff
    assert len(splits_index) == 4
    assert splits_index[-1] == size
    return splits_index

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
def get_samples_mapping(indexed_dataset,
                        data_prefix,
                        num_epochs,
                        max_num_samples,
                        max_seq_length,
                        short_seq_prob,
                        seed,
                        name,
                        binary_head):
    """Get a list that maps a sample index to a starting sentence index, end sentence index, and length"""

    if not num_epochs:
        if not max_num_samples:
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
    indexmap_filename += '_{}_indexmap'.format(name)
    if num_epochs != (np.iinfo(np.int32).max - 1):
        indexmap_filename += '_{}ep'.format(num_epochs)
    if max_num_samples != (np.iinfo(np.int64).max - 1):
        indexmap_filename += '_{}mns'.format(max_num_samples)
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{:0.2f}ssp'.format(short_seq_prob)
    indexmap_filename += '_{}s'.format(seed)
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0 and \
       not os.path.isfile(indexmap_filename):
        print(' > WARNING: could not find index map file {}, building '
              'the indices on rank 0 ...'.format(indexmap_filename))

        # Make sure the types match the helpers input types.
        assert indexed_dataset.doc_idx.dtype == np.int64
        assert indexed_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
        start_time = time.time()
mshoeybi's avatar
mshoeybi committed
677
        print_rank_0(' > building samples index mapping for {} ...'.format(
678
679
680
681
682
683
684
685
686
687
688
689
690
            name))
        # First compile and then import.
        from megatron.data import helpers
        samples_mapping = helpers.build_mapping(
            indexed_dataset.doc_idx,
            indexed_dataset.sizes,
            num_epochs,
            max_num_samples,
            max_seq_length,
            short_seq_prob,
            seed,
            verbose,
            2 if binary_head else 1)
mshoeybi's avatar
mshoeybi committed
691
        print_rank_0(' > done building samples index maping')
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
        np.save(indexmap_filename, samples_mapping, allow_pickle=True)
        print_rank_0(' > saved the index mapping in {}'.format(
            indexmap_filename))
        # Make sure all the ranks have built the mapping
        print_rank_0(' > elasped time to build and save samples mapping '
                     '(seconds): {:4f}'.format(
                         time.time() - start_time))
    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group())
    assert counts[0].item() == (
        torch.distributed.get_world_size() //
        torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group()))

    # Load indexed dataset.
    print_rank_0(' > loading indexed mapping from {}'.format(
        indexmap_filename))
    start_time = time.time()
    samples_mapping = np.load(indexmap_filename, allow_pickle=True, mmap_mode='r')
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
        samples_mapping.shape[0]))
718

719
    return samples_mapping