"mmdet3d/models/layers/vote_module.py" did not exist on "96c2c4e87154cdab18ba7a63611cda8c297a7bb7"
tokenizer.py 14.5 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2

Mohammad's avatar
Mohammad committed
3
"""Megatron tokenizers."""
4
5
6
7
8

from abc import ABC
from abc import abstractmethod

from .bert_tokenization import FullTokenizer as FullBertTokenizer
Mohammad's avatar
Mohammad committed
9
from .gpt2_tokenization import GPT2Tokenizer
10
11


Mohammad's avatar
Mohammad committed
12
def build_tokenizer(args):
Mohammad's avatar
Mohammad committed
13
14
    """Initialize tokenizer."""
    if args.rank == 0:
Mohammad's avatar
Mohammad committed
15
        print('> building {} tokenizer ...'.format(args.tokenizer_type),
Mohammad's avatar
Mohammad committed
16
              flush=True)
17

18
    if args.tokenizer_type not in ['SentencePieceTokenizer', 'GPTSentencePieceTokenizer']:
19
20
        assert args.vocab_file is not None

21
    # Select and instantiate the tokenizer.
Mohammad's avatar
Mohammad committed
22
23
    if args.tokenizer_type == 'BertWordPieceLowerCase':
        tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file,
24
25
                                            lower_case=True,
                                            vocab_extra_ids=args.vocab_extra_ids)
Raul Puri's avatar
Raul Puri committed
26
27
    elif args.tokenizer_type == 'BertWordPieceCase':
        tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file,
28
29
                                            lower_case=False,
                                            vocab_extra_ids=args.vocab_extra_ids)
Mohammad's avatar
Mohammad committed
30
31
32
    elif args.tokenizer_type == 'GPT2BPETokenizer':
        assert args.merge_file is not None
        tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file)
33
34
35
    elif args.tokenizer_type == 'SentencePieceTokenizer':
        assert args.tokenizer_model is not None
        tokenizer = _SentencePieceTokenizer(args.tokenizer_model, vocab_extra_ids=args.vocab_extra_ids)
36
37
38
    elif args.tokenizer_type == 'GPTSentencePieceTokenizer':
        assert args.tokenizer_model is not None
        tokenizer = _GPTSentencePieceTokenizer(args.tokenizer_model)
39
40
    else:
        raise NotImplementedError('{} tokenizer is not '
Mohammad's avatar
Mohammad committed
41
                                  'implemented.'.format(args.tokenizer_type))
42
43

    # Add vocab size.
Mohammad's avatar
Mohammad committed
44
45
    args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size,
                                                      args)
Mohammad's avatar
Mohammad committed
46
47
48
49

    return tokenizer


Mohammad's avatar
Mohammad committed
50
def _vocab_size_with_padding(orig_vocab_size, args):
Mohammad's avatar
Mohammad committed
51
52
53
54
55
    """Pad vocab size so it is divisible by model parallel size and
    still having GPU friendly size."""

    after = orig_vocab_size
    multiple = args.make_vocab_size_divisible_by * \
56
        args.tensor_model_parallel_size
Mohammad's avatar
Mohammad committed
57
58
59
60
61
62
63
    while (after % multiple) != 0:
        after += 1
    if args.rank == 0:
        print(' > padded vocab (size: {}) with {} dummy tokens '
              '(new size: {})'.format(
                  orig_vocab_size, after - orig_vocab_size, after), flush=True)
    return after
64
65
66
67
68
69
70
71
72
73
74
75
76
77


class AbstractTokenizer(ABC):
    """Abstract class for tokenizer."""

    def __init__(self, name):
        self.name = name
        super().__init__()

    @property
    @abstractmethod
    def vocab_size(self):
        pass

78
79
80
81
82
83
84
85
86
87
88
89
    @property
    @abstractmethod
    def vocab(self):
        """Dictionary from vocab text token to id token."""
        pass

    @property
    @abstractmethod
    def inv_vocab(self):
        """Dictionary from vocab id token to text token."""
        pass

90
91
92
93
    @abstractmethod
    def tokenize(self, text):
        pass

94
95
96
97
    def detokenize(self, token_ids):
        raise NotImplementedError('detokenizer is not implemented for {} '
                                  'tokenizer'.format(self.name))

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    @property
    def cls(self):
        raise NotImplementedError('CLS is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def sep(self):
        raise NotImplementedError('SEP is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def pad(self):
        raise NotImplementedError('PAD is not provided for {} '
                                  'tokenizer'.format(self.name))

    @property
    def eod(self):
        raise NotImplementedError('EOD is not provided for {} '
                                  'tokenizer'.format(self.name))

118
119
120
121
122
    @property
    def mask(self):
        raise NotImplementedError('MASK is not provided for {} '
                                  'tokenizer'.format(self.name))

123
124
125
126

class _BertWordPieceTokenizer(AbstractTokenizer):
    """Original BERT wordpiece tokenizer."""

127
    def __init__(self, vocab_file, lower_case=True, vocab_extra_ids=0):
128
129
130
131
132
133
134
135
136
        if lower_case:
            name = 'BERT Lower Case'
        else:
            name = 'BERT Upper Case'
        super().__init__(name)
        self.tokenizer = FullBertTokenizer(vocab_file, do_lower_case=lower_case)
        self.cls_id = self.tokenizer.vocab['[CLS]']
        self.sep_id = self.tokenizer.vocab['[SEP]']
        self.pad_id = self.tokenizer.vocab['[PAD]']
Neel Kant's avatar
Neel Kant committed
137
        self.mask_id = self.tokenizer.vocab['[MASK]']
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        self._additional_special_tokens = []

        # (dsachan) Add BOS and EOS tokens
        SPECIAL_TOKENS = {'eos_token': '[EOS]',
                          'bos_token': '[BOS]'}
        self._bos_token = '[BOS]'
        self.add_token(self._bos_token)
        self._bos_token_id = self.vocab.get(self._bos_token)

        self._eos_token = '[EOS]'
        self.add_token(self._eos_token)
        self._eos_token_id = self.vocab.get(self._eos_token)

        # (dsachan) Add additional special tokens
        # These can be used as sentinel tokens in T5 model inputs
        additional_special_tokens = []
        additional_special_tokens.extend(
            ["<extra_id_{}>".format(i) for i in range(vocab_extra_ids)])
        self.add_additional_special_tokens(additional_special_tokens)

    def add_token(self, token):
        if token not in self.vocab:
            self.inv_vocab[self.vocab_size] = token
            # self.vocab_size comes from len(vocab)
            # and it will increase as we add elements
            self.vocab[token] = self.vocab_size

    def add_additional_special_tokens(self, tokens_list):
        setattr(self, "additional_special_tokens", tokens_list)
        for value in tokens_list:
            self.add_token(value)
169
170
171
172
173

    @property
    def vocab_size(self):
        return self.tokenizer.vocab_size()

174
175
176
177
178
179
180
181
    @property
    def vocab(self):
        return self.tokenizer.vocab

    @property
    def inv_vocab(self):
        return self.tokenizer.inv_vocab

182
183
184
185
    def tokenize(self, text):
        text_tokens = self.tokenizer.tokenize(text)
        return self.tokenizer.convert_tokens_to_ids(text_tokens)

186
187
188
189
    def decode(self, ids):
        tokens = self.tokenizer.convert_ids_to_tokens(ids)
        return self.tokenizer.convert_tokens_to_string(tokens)

190
191
192
193
    def decode_token_ids(self, token_ids):
        tokens = self.tokenizer.convert_ids_to_tokens(token_ids)
        exclude_list = ['[PAD]', '[CLS]']
        non_pads = [t for t in tokens if t not in exclude_list]
194
195
196
197
198
199
200
201
202

        result = ""
        for s in non_pads:
            if s.startswith("##"):
                result += s[2:]
            else:
                result += " " + s

        return result
203

204
205
206
207
208
209
210
211
212
213
214
    @property
    def cls(self):
        return self.cls_id

    @property
    def sep(self):
        return self.sep_id

    @property
    def pad(self):
        return self.pad_id
Mohammad's avatar
Mohammad committed
215

216
217
218
    @property
    def mask(self):
        return self.mask_id
Mohammad's avatar
Mohammad committed
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    @property
    def bos_token(self):
        """ Beginning of sentence token id """
        return self._bos_token

    @property
    def eos_token(self):
        """ End of sentence token id """
        return self._eos_token

    @property
    def additional_special_tokens(self):
        """ All the additional special tokens you may want to use (list of strings)."""
        return self._additional_special_tokens

    @property
    def bos_token_id(self):
        """ Id of the beginning of sentence token in the vocabulary."""
        return self._bos_token_id

    @property
    def eos_token_id(self):
        """ Id of the end of sentence token in the vocabulary."""
        return self._eos_token_id

    @property
    def additional_special_tokens_ids(self):
        """ Ids of all the additional special tokens in the vocabulary (list of integers)."""
        return [self.vocab.get(token) for token in self._additional_special_tokens]

    @additional_special_tokens.setter
    def additional_special_tokens(self, value):
        self._additional_special_tokens = value

Neel Kant's avatar
Neel Kant committed
254

Mohammad's avatar
Mohammad committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
class _GPT2BPETokenizer(AbstractTokenizer):
    """Original GPT2 BPE tokenizer."""

    def __init__(self, vocab_file, merge_file):
        name = 'GPT2 BPE'
        super().__init__(name)

        self.tokenizer = GPT2Tokenizer(vocab_file, merge_file, errors='replace',
                                       special_tokens=[], max_len=None)
        self.eod_id = self.tokenizer.encoder['<|endoftext|>']

    @property
    def vocab_size(self):
        return len(self.tokenizer.encoder)

270
271
272
273
274
275
276
277
    @property
    def vocab(self):
        return self.tokenizer.encoder

    @property
    def inv_vocab(self):
        return self.tokenizer.decoder

Mohammad's avatar
Mohammad committed
278
279
280
    def tokenize(self, text):
        return self.tokenizer.encode(text)

281
282
283
    def detokenize(self, token_ids):
        return self.tokenizer.decode(token_ids)

Mohammad's avatar
Mohammad committed
284
285
286
    @property
    def eod(self):
        return self.eod_id
287
288
289
290
291
292
293
294
295


class _SentencePieceTokenizer(AbstractTokenizer):
    """SentencePieceTokenizer-Megatron wrapper"""

    def __init__(self, model_file, vocab_extra_ids=0):
        name = 'SentencePieceTokenizer'
        super().__init__(name)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
296
        import sentencepiece
297
        self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=model_file)
298
299
        self._initalize(vocab_extra_ids)

300
    def _populate_vocab(self):
301
302
303
        self._vocab = {}
        self._inv_vocab = {}

304
305
306
307
308
309
310
        for i in range(len(self.tokenizer)):
            t = self.tokenizer.id_to_piece(i)
            self._inv_vocab[i] = t
            self._vocab[t] = i

    def _initalize(self, vocab_extra_ids):
        self._populate_vocab()
311
312
313
314
315
316
317
318
319
320
321
322
323
        self._special_tokens = {}
        self._inv_special_tokens = {}

        self._t5_tokens = []

        def _add_special_token(t):
            if t not in self._vocab:
                next_id = len(self._vocab)
                self._vocab[t] = next_id
                self._inv_vocab[next_id] = t
            self._special_tokens[t] = self._vocab[t]
            self._inv_special_tokens[self._vocab[t]] = t

Vijay Korthikanti's avatar
Vijay Korthikanti committed
324
325
326
327
328
329
330
331
        _add_special_token('<CLS>')
        self._cls_id = self._vocab['<CLS>']
        _add_special_token('<SEP>')
        self._sep_id = self._vocab['<SEP>']
        _add_special_token('<EOD>')
        self._eod_id = self._vocab['<EOD>']
        _add_special_token('<MASK>')
        self._mask_id = self._vocab['<MASK>']
332

333
        pad_id = self.tokenizer.pad_id()
334
        try:
335
            pad_token = self.tokenizer.id_to_piece(pad_id)
336
337
        except IndexError:
            pad_token = '<PAD>'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
338
339
        _add_special_token(pad_token)
        self._pad_id = self._vocab[pad_token]
340

341
        bos_id = self.tokenizer.bos_id()
342
        try:
343
            bos_token = self.tokenizer.id_to_piece(bos_id)
344
345
        except IndexError:
            bos_token = '<BOS>'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
346
347
        _add_special_token(bos_token)
        self._bos_id = self._vocab[bos_token]
348

349
        eos_id = self.tokenizer.eos_id()
350
        try:
351
            eos_token = self.tokenizer.id_to_piece(eos_id)
352
353
        except IndexError:
            eos_token = '<EOS>'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
354
355
        _add_special_token(eos_token)
        self._eos_id = self._vocab[eos_token]
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

        for i in range(vocab_extra_ids):
            t = "<extra_id_{}>".format(i)
            _add_special_token(t)
            self._t5_tokens += [t]

    @property
    def vocab_size(self):
        return len(self._vocab)

    @property
    def vocab(self):
        return self._vocab

    @property
    def inv_vocab(self):
        return self._inv_vocab

374
375
376
377
378
379
380
381
    @property
    def decoder(self):
        return self._inv_vocab

    @property
    def encoder(self):
        return self._vocab

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    # From:
    # https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L89
    def tokenize(self, text):
        ids = []
        idx = 0

        while 1:
            indices = {}
            for token in self._special_tokens:
                try:
                    indices[token] = text[idx:].index(token)
                except ValueError:
                    continue
            if len(indices) == 0:
                break

            next_token = min(indices, key=indices.get)
            next_idx = idx + indices[next_token]

401
            ids.extend(self.tokenizer.encode_as_ids(text[idx:next_idx]))
402
403
404
            ids.append(self._special_tokens[next_token])
            idx = next_idx + len(next_token)

405
        ids.extend(self.tokenizer.encode_as_ids(text[idx:]))
406
407
408
409
410
411
412
413
414
415
        return ids

    # From:
    # https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L125
    def detokenize(self, ids):
        text = ""
        last_i = 0

        for i, id in enumerate(ids):
            if id in self._inv_special_tokens:
416
                text += self.tokenizer.decode_ids(ids[last_i:i]) + " "
417
418
419
                text += self._inv_special_tokens[id] + " "
                last_i = i + 1

420
421
        text += self.tokenizer.decode_ids(ids[last_i:])
        return text
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

    @property
    def cls(self):
        return self._cls_id

    @property
    def sep(self):
        return self._sep_id

    @property
    def pad(self):
        return self._pad_id

    @property
    def bos_token_id(self):
        return self._bos_id

    @property
    def bos(self):
        return self._bos_id

    @property
    def eod(self):
        return self._eod_id

    @property
    def eos_token_id(self):
        return self._eos_id

    @property
    def eos(self):
        return self._eos_id

    @property
    def mask(self):
        return self._mask_id

    @property
    def additional_special_tokens_ids(self):
        return [self.vocab[k] for k in self._t5_tokens]

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

class _GPTSentencePieceTokenizer(_SentencePieceTokenizer):
    """SentencePieceTokenizer-Megatron wrapper"""

    def __init__(self, model_file,):
        super().__init__(model_file, vocab_extra_ids=0)

    def _initalize(self, vocab_extra_ids):
        self._populate_vocab()

        self._pad_id = self.tokenizer.pad_id()
        self._bos_id = self.tokenizer.bos_id()
        self._eos_id = self.tokenizer.eos_id()

    def tokenize(self, text):
        return self.tokenizer.encode_as_ids(text)

    def detokenize(self, ids):
        return self.tokenizer.decode_ids(ids)

    @property
    def cls(self):
        return -1

    @property
    def sep(self):
        return -1

    @property
    def mask(self):
        return -1

    @property
    def eod(self):
        return self._eos_id

    @property
    def additional_special_tokens_ids(self):
        return None