ict_dataset.py 6.57 KB
Newer Older
1
import random
2
3
import os
import time
4
5

import numpy as np
6
import torch
7
8
9
from torch.utils.data import Dataset

from megatron import get_tokenizer
10
11
12
from megatron import print_rank_0
from megatron import mpu
from megatron.data import helpers
13

14

15
class InverseClozeDataset(Dataset):
16
17
    """Dataset containing sentences and their blocks for an inverse cloze task."""
    def __init__(self, name, context_dataset, titles_dataset, data_prefix,
18
19
20
21
22
                 num_epochs, max_num_samples, max_seq_length,
                 short_seq_prob, seed):
        self.name = name
        self.seed = seed
        self.max_seq_length = max_seq_length
23
24
        self.context_dataset = context_dataset
        self.titles_dataset = titles_dataset
25
        self.short_seq_prob = short_seq_prob
26
27
28
29
30
31
32
33
34
35
        self.rng = random.Random(self.seed)

        self.samples_mapping = get_samples_mapping(self.context_dataset,
                                                   self.titles_dataset,
                                                   data_prefix,
                                                   num_epochs,
                                                   max_num_samples,
                                                   self.max_seq_length,
                                                   self.seed,
                                                   self.name)
36
37
38
39
40
41
42
43
44
        tokenizer = get_tokenizer()
        self.vocab_id_list = list(tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_list = tokenizer.inv_vocab
        self.cls_id = tokenizer.cls
        self.sep_id = tokenizer.sep
        self.mask_id = tokenizer.mask
        self.pad_id = tokenizer.pad

    def __len__(self):
45
        return self.samples_mapping.shape[0]
46
47

    def __getitem__(self, idx):
48
49
50
        start_index, end_index, _ = self.samples_mapping[idx]
        context = [self.indexed_dataset[i] for i in range(start_index, end_index)]
        assert len(context) > 1
51

52
53
54
55
56
57
58
59
        title = self.titles_dataset[idx]
        assert sum(len(c) for c in context) + len(title) <= self.max_seq_length - 3

        rand_sent_idx = self.rng.randint(0, len(context) - 1)
        if self.rng.random() < 0.1:
            input = list(context[rand_sent_idx])
        else:
            input = context.pop(rand_sent_idx)
60

61
62
        input_tokens, input_token_types, input_pad_mask = self.concat_and_pad_tokens(input)
        context_tokens, context_token_types, context_pad_mask = self.concat_and_pad_tokens(context, title)
63
64
65
66
67
68
69
70
71
72
73
74

        sample = {
            'input_text': np.array(input_tokens),
            'input_types': np.array(input_token_types),
            'input_pad_mask': np.array(input_pad_mask),
            'context_text': np.array(context_tokens),
            'context_types': np.array(context_token_types),
            'context_pad_mask': np.array(context_pad_mask)
        }

        return sample

75
    def concat_and_pad_tokens(self, tokens, title=None):
76
77
        """concat with special tokens and pad sequence to self.max_seq_length"""
        tokens = [self.cls_id] + tokens + [self.sep_id]
78
79
        if title is not None:
            tokens += title + [self.sep_id]
80
        assert len(tokens) <= self.max_seq_length
81
82

        num_pad = self.max_seq_length - len(tokens)
83
84
        pad_mask = [0] * len(tokens) + [1] * num_pad
        tokens += [self.pad_id] * num_pad
85
        token_types = [0] * self.max_seq_length
86
87
        return tokens, token_types, pad_mask

88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
def get_samples_mapping(context_dataset,
                        titles_dataset,
                        data_prefix,
                        num_epochs,
                        max_num_samples,
                        max_seq_length,
                        seed,
                        name):
    if not num_epochs:
        if not max_num_samples:
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
    indexmap_filename += '_{}_indexmap'.format(name)
    if num_epochs != (np.iinfo(np.int32).max - 1):
        indexmap_filename += '_{}ep'.format(num_epochs)
    if max_num_samples != (np.iinfo(np.int64).max - 1):
        indexmap_filename += '_{}mns'.format(max_num_samples)
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{}s'.format(seed)
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0 and \
            not os.path.isfile(indexmap_filename):
        print(' > WARNING: could not find index map file {}, building '
              'the indices on rank 0 ...'.format(indexmap_filename))

        # Make sure the types match the helpers input types.
        assert context_dataset.doc_idx.dtype == np.int64
        assert context_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
        start_time = time.time()
        print_rank_0(' > building samples index mapping for {} ...'.format(
            name))
        samples_mapping = helpers.build_blocks_mapping(
            context_dataset.doc_idx,
            context_dataset.sizes,
            titles_dataset.sizes,
            num_epochs,
            max_num_samples,
            max_seq_length-3,  # account for added tokens
            seed,
            verbose)
        print_rank_0(' > done building samples index mapping')
        np.save(indexmap_filename, samples_mapping, allow_pickle=True)
        print_rank_0(' > saved the index mapping in {}'.format(
            indexmap_filename))
        # Make sure all the ranks have built the mapping
        print_rank_0(' > elapsed time to build and save samples mapping '
                     '(seconds): {:4f}'.format(
            time.time() - start_time))
    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    assert counts[0].item() == torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())

    # Load indexed dataset.
    print_rank_0(' > loading indexed mapping from {}'.format(
        indexmap_filename))
    start_time = time.time()
    samples_mapping = np.load(indexmap_filename, allow_pickle=True)
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
        samples_mapping.shape[0]))

    return samples_mapping
167